El efecto del entrenamiento de remo aéreo a intervalos anaeróbicos (AIART) en el aumento de la fuerza y resistencia de los músculos de la parte superior del cuerpo en atletas de remo (The effect of anaerobic interval Air Rowing Training (AIART) on increasing strength endurance of upper body muscles in rowing athletes)

Autores/as

DOI:

https://doi.org/10.47197/retos.v61.109793

Palabras clave:

Muscle strength, muscle endurance, rowing athletes, physical performance

Resumen

Este estudio tiene como objetivo explorar en profundidad cómo se puede optimizar el entrenamiento a intervalos con un Air Rower para respaldar el máximo rendimiento en los atletas de remo. El método de investigación aplicado es un diseño verdaderamente experimental con un diseño de grupo control pretest-postest, en el que participaron 20 deportistas de remo masculinos con edades entre 18 y 20 años, divididos en dos grupos: el grupo control (G1; n = 10) y el grupo de tratamiento. (G2;n=10). El programa Anaeróbico Interval Air Rower Training (AIART) se realizó a una intensidad del 85-95% FCmáx, con una frecuencia de 3 veces por semana durante 6 semanas. Los datos se recopilaron evaluando la fuerza muscular utilizando un dinamómetro, mientras que la resistencia muscular se evaluó mediante la prueba de dominadas de la parte superior del cuerpo realizada durante un minuto. El análisis de los datos se realizó mediante la prueba t de muestra independiente y la evaluación del tamaño del efecto se realizó mediante la d de Cohen. Los resultados mostraron un aumento significativo en la fuerza muscular delta media (∆) entre G1 y G2 (0,50 ± 0,97 frente a 2,50 ± 0,53 kg, p = 0,001) y tuvieron un tamaño de efecto grande con un valor d de Cohen de 2,558. De manera similar, la resistencia muscular ∆ media mostró un aumento significativo entre G1 y G2 (0,21 ± 0,67 frente a 2,74 ± 0,65 veces, p = 0,001) y tuvo un tamaño de efecto grande con un valor d de Cohen de 3,855. Por tanto, se concluye que la intervención AIART realizada durante 6 semanas en deportistas de remo ha demostrado ser eficaz para mejorar la fuerza y ​​la resistencia muscular.

Palabras clave: Fuerza muscular, resistencia muscular, deportistas de remo, rendimiento físico

Abstract. This study aims to explore in depth how interval training with an Air Rower can be optimized to support maximum performance in rowing athletes. The research method applied is a true-experimental design with a pretest-posttest control group design, involving 20 male rowing athletes aged 18-20 years, divided into two groups: the control group (G1; n = 10), and the treatment group (G2; n = 10). The Anaerobic Interval Air Rower Training (AIART) program was conducted at an intensity of 85-95% HRmax, with a frequency of 3 times per week for 6 weeks. Data was collected by evaluating muscle strength using a dynamometer, while muscle endurance was tested using the upper body pull-up test performed over one minute. Data analysis was conducted using the independent sample t-test, and effect size evaluation was performed using Cohen's d. The results showed a significant increase in the mean delta (∆) muscle strength between G1 and G2 (0.50±0.97 vs 2.50±0.53 kg, p=0.001) and had a large effect size with a Cohen's d value of 2.558. Similarly, the mean ∆ muscle endurance showed a significant increase between G1 and G2 (0.21±0.67 vs 2.74±0.65 times, p=0.001) and had a large effect size with a Cohen's d value of 3.855. Therefore, it is concluded that the AIART intervention conducted over 6 weeks on rowing athletes is proven to be effective in improving muscle strength and endurance.

Keywords: Muscle strength, muscle endurance, rowing athletes, physical performance

Referencias

Araujo Bonetti DE Poli, R., Murias, J. M., Antunes, B. M., Marinari, G., Dutra, Y. M., Milioni, F., & Zagatto, A. M. (2024). Five Weeks of Sprint Interval Training Improve Muscle Glycolytic Content and Activity But Not Time to Task Failure in Severe-Intensity Exercise. Medicine and science in sports and exercise, 56(8), 1355–1367. https://doi.org/10.1249/MSS.0000000000003425.

Atakan, M. M., Li, Y., Koşar, Ş. N., Turnagöl, H. H., & Yan, X. (2021). Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. International journal of environmental research and public health, 18(13), 7201. https://doi.org/10.3390/ijerph18137201.

Bagheri, R., Karimi, Z., Camera, D. M., Scott, D., Bashirzad, M. Z., Sadeghi, R., Kargarfard, M., & Dutheil, F. (2024). Association between changes in lean mass, muscle strength, endurance, and power following resistance or concurrent training with differing high protein diets in resistance-trained young males. Frontiers in nutrition, 11, 1439037. https://doi.org/10.3389/fnut.2024.1439037.

Chang, C. H., Ho, C. S., Li, F., Chen, C. Y., Yeh, H. C., & Ho, C. A. (2024). Acute effects of muscle mechanical properties after 2000-m rowing in young male rowers. PeerJ, 12, e16737. https://doi.org/10.7717/peerj.16737.

Duchene, Y., Simon, F. R., Ertel, G. N., Maciejewski, H., Gauchard, G. C., & Mornieux, G. (2024). The stroke rate influences performance, technique and core stability during rowing ergometer. Sports biomechanics, 1–18. Advance online publication. https://doi.org/10.1080/14763141.2024.2301992.

Euiler, E., & Finley, M. (2022). Reliability of Upper-Extremity Muscle Activity and Kinematics During Adaptive Rowing. Journal of sport rehabilitation, 31(7), 926–932. https://doi.org/10.1123/jsr.2021-0266.

Flockhart, M., & Larsen, F. J. (2024). Continuous Glucose Monitoring in Endurance Athletes: Interpretation and Relevance of Measurements for Improving Performance and Health. Sports medicine (Auckland, N.Z.), 54(2), 247–255. https://doi.org/10.1007/s40279-023-01910-4.

Flores-Opazo, M., McGee, S. L., & Hargreaves, M. (2020). Exercise and GLUT4. Exercise and sport sciences reviews, 48(3), 110–118. https://doi.org/10.1249/JES.0000000000000224.

Huerta Ojeda, Á., Fontecilla Díaz, B., Yeomans Cabrera, M. M., & Jerez-Mayorga, D. (2021). Grip power test: A new valid and reliable method for assessing muscle power in healthy adolescents. PloS one, 16(10), e0258720. https://doi.org/10.1371/journal.pone.0258720.

Islam, H., & Gillen, J. B. (2023). Skeletal muscle mechanisms contributing to improved glycemic control following intense interval exercise and training. Sports medicine and health science, 5(1), 20–28. https://doi.org/10.1016/j.smhs.2023.01.002.

Liu, Y., Abdullah, B. B., & Abu Saad, H. B. (2024). Effects of high-intensity interval training on strength, speed, and endurance performance among racket sports players: A systematic review. PloS one, 19(1), e0295362. https://doi.org/10.1371/journal.pone.0295362.

Morcillo-Losa, J. A., Díaz-Martínez, M. D. P., Ceylan, H. İ., Moreno-Vecino, B., Bragazzi, N. L., & Párraga Montilla, J. (2024). Effects of High-Intensity Interval Training on Muscle Strength for the Prevention and Treatment of Sarcopenia in Older Adults: A Systematic Review of the Literature. Journal of clinical medicine, 13(5), 1299. https://doi.org/10.3390/jcm13051299.

Negrete, R. J., Hanney, W. J., Pabian, P., & Kolber, M. J. (2013). Upper body push and pull strength ratio in recreationally active adults. International journal of sports physical therapy, 8(2), 138–144.

Ní Chéilleachair, N. J., Harrison, A. J., & Warrington, G. D. (2017). HIIT enhances endurance performance and aerobic characteristics more than high-volume training in trained rowers. Journal of sports sciences, 35(11), 1052–1058. https://doi.org/10.1080/02640414.2016.1209539.

Nitzsche, N., Lenz, J. C., Voronoi, P., & Schulz, H. (2020). Adaption of Maximal Glycolysis Rate after Resistance Exercise with Different Volume Load. Sports medicine international open, 4(2), E39–E44. https://doi.org/10.1055/a-1146-4236.

Peng, C. J., Chen, S., Yan, S. Y., Zhao, J. N., Luo, Z. W., Qian, Y., & Zhao, G. L. (2024). Mechanism underlying the effects of exercise against type 2 diabetes: A review on research progress. World journal of diabetes, 15(8), 1704–1711. https://doi.org/10.4239/wjd.v15.i8.1704.

Penichet-Tomas, A., Jimenez-Olmedo, J. M., Pueo, B., & Olaya-Cuartero, J. (2023). Physiological and Mechanical Responses to a Graded Exercise Test in Traditional Rowing. International journal of environmental research and public health, 20(4), 3664. https://doi.org/10.3390/ijerph20043664.

Podgórski, T., Nowak, A., Domaszewska, K., Mączyński, J., Jabłońska, M., Janowski, J., & Ogurkowska, M. B. (2020). Muscle strength and inflammatory response to the training load in rowers. PeerJ, 8. https://doi.org/10.7717/peerj.10355.

Schünemann, F., Park, S. Y., Wawer, C., Theis, C., Yang, W. H., & Gehlert, S. (2023). Diagnostics of νLa.max and Glycolytic Energy Contribution Indicate Individual Characteristics of Anaerobic Glycolytic Energy Metabolism Contributing to Rowing Performance. Metabolites, 13(3), 317. https://doi.org/10.3390/metabo13030317.

Slavin, M. B., Khemraj, P., & Hood, D. A. (2024). Exercise, mitochondrial dysfunction and inflammasomes in skeletal muscle. Biomedical journal, 47(1), 100636. https://doi.org/10.1016/j.bj.2023.100636.

Thiele, D., Prieske, O., Chaabene, H., & Granacher, U. (2020). Effects of strength training on physical fitness and sport-specific performance in recreational, sub-elite, and elite rowers: A systematic review with meta-analysis. Journal of sports sciences, 38(10), 1186–1195. https://doi.org/10.1080/02640414.2020.1745502.

Volianitis, S., Yoshiga, C. C., & Secher, N. H. (2020). The physiology of rowing with perspective on training and health. European journal of applied physiology, 120(9), 1943–1963. https://doi.org/10.1007/s00421-020-04429-y.

Winkert, K., Steinacker, J. M., Koehler, K., & Treff, G. (2022). High Energetic Demand of Elite Rowing - Implications for Training and Nutrition. Frontiers in physiology, 13, 829757. https://doi.org/10.3389/fphys.2022.829757.

Descargas

Publicado

01-12-2024

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas

Cómo citar

Nurkholis, N., Suyoko, A., Subagio, I., Phanpheng, Y., Kusuma, I. D. M. A. W., & Pranoto, A. (2024). El efecto del entrenamiento de remo aéreo a intervalos anaeróbicos (AIART) en el aumento de la fuerza y resistencia de los músculos de la parte superior del cuerpo en atletas de remo (The effect of anaerobic interval Air Rowing Training (AIART) on increasing strength endurance of upper body muscles in rowing athletes). Retos, 61, 1025-1030. https://doi.org/10.47197/retos.v61.109793