Asociación del polimorfismo GLY482SER del gen PGC-1α con el rendimiento aeróbico y la fuerza muscular
DOI:
https://doi.org/10.47197/retos.v68.112827Palabras clave:
Gly482Ser, rendimiento aeróbico, polimorfismo de PGC-1α, test de rendimiento físico, adultos jóvenes.Resumen
Introducción: El gen del coactivador del receptor gamma 1-alfa activado por el proliferador de peroxisomas (PGC-1α) tiene un polimorfismo conocido como Gly482Ser que se ha asociado con la capacidad aeróbica.
Objetivo. Explorar la asociación del polimorfismo Gly482Ser del gen PGC-1α con el rendimiento aeróbico y fuerza en adultos jóvenes.
Métodos. Un estudio de corte transversal comprendió 106 participantes. El polimorfismo Gly482Ser se determinó utilizando la técnica RFLP-PCR. Se administraron evaluaciones físicas estandarizadas para capacidad aeróbica y fuerza muscular.
Resultados. El genotipo homocigoto Gly482 demostró un mejor rendimiento físico evaluado por la prueba de caminata de 6 minutos (6MWT), y una mejor recuperación de frecuencia cardíaca. Los hombres homocigotos Gly482 lograron una mayor distancia de caminata. Las mujeres tuvieron un mayor consumo de oxígeno durante la prueba de Astrand. No se observaron diferencias significativas en el índice de Ruffier. En la fuerza muscular evaluada a través del test de flexiones, las mujeres con el genotipo Gly482 se encontraron en desventaja, sin diferencias en fuerza de agarre manual y fuerza isométrica máxima. Para los hombres, no se observaron diferencias estadísticamente significativas en la fuerza muscular.
Discusión. Los resultados son consistentes con informes previos en los que el alelo Gly482 muestra una asociación con el rendimiento aeróbico, mientras que el alelo Ser482 se ha asociado con la fuerza y potencia muscular.
Conclusiones. El polimorfismo Gly482Ser del gen PGC-1α se asocia con variaciones en el rendimiento físico, en donde el genotipo Gly482 demuestra un rendimiento superior en evaluaciones de capacidad aeróbica entre adultos jóvenes.
Citas
Alahmari, K. A., Rengaramanujam, K., Reddy, R. S., Samuel, P. S., Kakaraparthi, V. N., Ahmad, I., & Tedla, J. S. (2020). Cardiorespiratory Fitness as a Correlate of Cardiovascular, Anthropometric, and Physical Risk Factors: Using the Ruffier Test as a Template. Can Respir J, 2020, 3407345. https://doi.org/10.1155/2020/3407345
Amaral, J. F., Mancini, M., & Novo Júnior, J. M. (2012). Comparison of three hand dynamometers in relation to the accuracy and precision of the measurements. Rev Bras Fisioter, 16(3), 216-224. https://doi.org/10.1590/s1413-35552012000300007
Arroyo Moya, W. (2021). Genética y fútbol: asociación de los polimorfismos genéticos ACTN3 y ACE-I/D en jugadores de fútbol: Revisión literaria (Genetic and soccer: association of ACTN3 and ACE-I/D genetic polymorphisms in soccer players: Literary review). Retos, 39(0), 929-936. https://doi.org/10.47197/retos.v0i39.79347
Bailén, M., Tabone, M., Bressa, C., Lominchar, M. G. M., Larrosa, M., & González-Soltero, R. (2022). Unraveling Gut Microbiota Signatures Associated with PPARD and PARGC1A Genetic Polymorphisms in a Healthy Population. Genes, 13(2), 289. https://doi.org/10.3390/genes13020289
Bohannon, R. W. (2008). Hand-grip dynamometry predicts future outcomes in aging adults. J Geriatr Phys Ther, 31(1), 3-10. https://doi.org/10.1519/00139143-200831010-00002
Chiu, L. L., Chen, T. W., Hsieh, S. S., & Hsieh, L. L. (2012). ACE I/D, ACTN3 R577X, PPARD T294C and PPARGC1A Gly482Ser polymorphisms and physical fitness in Taiwanese late adolescent girls. J Physiol Sci, 62(2), 115-121. https://doi.org/10.1007/s12576-011-0189-0
Chung, H. C., Keiller, D. R., Roberts, J. D., & Gordon, D. A. (2021). Do exercise-associated genes explain phenotypic variance in the three components of fitness? a systematic review & meta-analysis. PLoS One, 16(10), e0249501. https://doi.org/10.1371/journal.pone.0249501
de Ruiter, C. J., de Korte, A., Schreven, S., & de Haan, A. (2010). Leg dominancy in relation to fast isometric torque production and squat jump height. Eur J Appl Physiol, 108, 247-255. https://doi.org/10.1007/s00421-009-1209-0
Eggelbusch, M., Charlton, B. T., Bosutti, A., Ganse, B., Giakoumaki, I., Grootemaat, A. E., Hendrickse, P. W., Jaspers, Y., Kemp, S., Kerkhoff, T. J., Noort, W., van Weeghel, M., van der Wel, N. N., Wesseling, J. R., Frings-Meuthen, P., Rittweger, J., Mulder, E. R., Jaspers, R. T., Degens, H., & Wüst, R. C. I. (2024). The impact of bed rest on human skeletal muscle metabolism. Cell Rep Med, 5(1), 101372. https://doi.org/10.1016/j.xcrm.2023.101372
Eynon, N., Meckel, Y., Sagiv, M., Yamin, C., Amir, R., Sagiv, M., Goldhammer, E., Duarte, J. A., & Oliveira, J. (2010). Do PPARGC1A and PPARalpha polymorphisms influence sprint or endurance phenotypes? Scand J Med Sci Sports, 20, e145-e150. https://doi.org/10.1111/j.1600-0838.2009.00930.x
Eynon, N., Ruiz, J. R., Meckel, Y., Morán, M., & Lucia, A. (2011). Mitochondrial biogenesis related endurance genotype score and sports performance in athletes. Mitochondrion, 11(1), 64-69. https://doi.org/10.1016/j.mito.2010.07.004
Fiorenza, M., Gunnarsson, T. P., Hostrup, M., Iaia, F. M., Schena, F., Pilegaard, H., & Bangsbo, J. (2018). Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle. J Physiol, 596(14), 2823-2840. https://doi.org/10.1113/jp275972
Flores-Alfaro, E., Burguete-García, A. I., & Salazar-Martínez, E. (2012). Diseños de investigación en epidemiología genética. Rev Panam de Salud Pública, 31(1), 88-94. http://www.scielosp.org/scielo.php?script=sci_arttext&pid=S1020-49892012000100013&lang=es
Flück, M., Protte, C., Giraud, M. N., Gsponer, T., & Dössegger, A. (2024). Genotypic Influences on Actuators of Aerobic Performance in Tactical Athletes. Genes, 15(12), 1535. https://doi.org/10.3390/genes15121535
Franks, P. W., Barroso, I., Luan, J., Ekelund, U., Crowley, V. E., Brage, S., Sandhu, M. S., Jakes, R. W., Middelberg, R. P., Harding, A. H., Schafer, A. J., O'Rahilly, S., & Wareham, N. J. (2003). PGC-1alpha genotype modifies the association of volitional energy expenditure with VO2max. Medicine & Science in Sports & Exercise, 35(12), 1998-2004. https://doi.org/10.1249/01.Mss.0000099109.73351.81
Geloneze, S. R., Geloneze, B., Morari, J., Matos-Souza, J. R., Lima, M. M., Chaim, E. A., Pareja, J. C., & Velloso, L. A. (2012). PGC1α gene Gly482Ser polymorphism predicts improved metabolic, inflammatory and vascular outcomes following bariatric surgery. International Journal of Obesity, 36(3), 363-368. https://doi.org/10.1038/ijo.2011.176
Georgoulias, P., Demakopoulos, N., Valotassiou, V., Orfanakis, A., Zaganides, A., Tsougos, I., & Fezoulidis, I. (2009). Long-term prognostic value of heart-rate recovery after treadmill testing in patients with diabetes mellitus. Int J Cardiol, 134(1), 67-74. https://doi.org/10.1016/j.ijcard.2008.01.036
Gianotti, T. F., Sookoian, S., Dieuzeide, G., García, S. I., Gemma, C., González, C. D., & Pirola, C. J. (2008). A Decreased Mitochondrial DNA Content Is Related to Insulin Resistance in Adolescents. Obesity, 16(7), 1591-1595. https://doi.org/10.1038/oby.2008.253
Gielen, M., Westerterp-Plantenga, M. S., Bouwman, F. G., Joosen, A. M., Vlietinck, R., Derom, C., Zeegers, M. P., Mariman, E. C., & Westerterp, K. R. (2014). Heritability and genetic etiology of habitual physical activity: a twin study with objective measures. Genes Nutr, 9(4), 415. https://doi.org/10.1007/s12263-014-0415-5
Gineviciene, V., Jakaitiene, A., Aksenov, M. O., Aksenova, A. V., Druzhevskaya, A. M., Astratenkova, I. V., Egorova, E. S., Gabdrakhmanova, L. J., Tubelis, L., Kucinskas, V., & Utkus, A. (2016). Association analysis of ACE, ACTN3 and PPARGC1A gene polymorphisms in two cohorts of European strength and power athletes. Biol Sport, 33(3), 199-206. https://doi.org/10.5604/20831862.1201051
Hara, K., Tobe, K., Okada, T., Kadowaki, H., Akanuma, Y., Ito, C., Kimura, S., & Kadowaki, T. (2002). A genetic variation in the PGC-1 gene could confer insulin resistance and susceptibility to Type II diabetes. Diabetologia, 45(5), 740-743. https://doi.org/10.1007/s00125-002-0803-z
He, Z., Hu, Y., Feng, L., Bao, D., Wang, L., Li, Y., Wang, J., Liu, G., Xi, Y., Wen, L., & Lucia, A. (2008). Is there an association between PPARGC1A genotypes and endurance capacity in Chinese men? Scand J Med Sci Sports, 18(2), 195-204. https://doi.org/10.1111/j.1600-0838.2007.00648.x
Hoeper, M. M., Taha, N., Bekjarova, A., Gatzke, R., & Spiekerkoetter, E. (2003). Bosentan treatment in patients with primary pulmonary hypertension receiving nonparenteral prostanoids. Eur Respir J, 22(2), 330-334. https://doi.org/10.1183/09031936.03.00008003
Huang, M., Claussnitzer, M., Saadat, A., Coral, D. E., Kalamajski, S., & Franks, P. W. (2023). Engineered allele substitution at PPARGC1A rs8192678 alters human white adipocyte differentiation, lipogenesis, and PGC-1α content and turnover. Diabetologia, 66(7), 1289-1305. https://doi.org/10.1007/s00125-023-05915-6
Jalili, M., Nazem, F., Sazvar, A., & Ranjbar, K. (2018). Prediction of Maximal Oxygen Uptake by Six-Minute Walk Test and Body Mass Index in Healthy Boys. J Pediatr, 200, 155-159. https://doi.org/10.1016/j.jpeds.2018.04.026
Jankowski, M., Niedzielska, A., Brzezinski, M., & Drabik, J. (2015). Cardiorespiratory fitness in children: a simple screening test for population studies. Pediatr Cardiol, 36(1), 27-32. https://doi.org/10.1007/s00246-014-0960-0
Konopka, M. J., van den Bunder, J., Rietjens, G., Sperlich, B., & Zeegers, M. P. (2022). Genetics of long-distance runners and road cyclists-A systematic review with meta-analysis. Scand J Med Sci Sports, 32(10), 1414-1429. https://doi.org/10.1111/sms.14212
Kučinskas, V., Milašius, K., Pranckevičienė, E., & Ginevičienė, V. (2010). Relating fitness phenotypes to genotypes in Lithuanian elite athletes. Acta medica Lituanica, 17(1), 1-10. https://doi.org/10.2478/v10140-010-0001-0
Lakin, R., Notarius, C., Thomas, S., & Goodman, J. (2013). Effects of moderate-intensity aerobic cycling and swim exercise on post-exertional blood pressure in healthy young untrained and triathlon-trained men and women. Clin Sci (Lond), 125(12), 543-553. https://doi.org/10.1042/cs20120508
Larsen, A. I., Aarsland, T., Kristiansen, M., Haugland, A., & Dickstein, K. (2001). Assessing the effect of exercise training in men with heart failure; comparison of maximal, submaximal and endurance exercise protocols. Eur Heart J, 22(8), 684-692. https://doi.org/10.1053/euhj.2000.2286
Li, L., Pan, R., Li, R., Niemann, B., Aurich, A. C., Chen, Y., & Rohrbach, S. (2011). Mitochondrial biogenesis and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) deacetylation by physical activity: intact adipocytokine signaling is required. Diabetes, 60(1), 157-167. https://doi.org/10.2337/db10-0331
Lindemberg, S., Chermont, S., Quintão, M., Derossi, M., Guilhon, S., Bernardez, S., Marchese, L., Martins, W., Nóbrega, A. C., & Mesquita, E. T. (2014). Heart rate recovery in the first minute at the six-minute walk test in patients with heart failure. Arq Bras Cardiol, 102(3), 279-287. https://doi.org/10.5935/abc.20140036
Ling, C., Poulsen, P., Carlsson, E., Ridderstråle, M., Almgren, P., Wojtaszewski, J., Beck-Nielsen, H., Groop, L., & Vaag, A. (2004). Multiple environmental and genetic factors influence skeletal muscle PGC-1alpha and PGC-1beta gene expression in twins. J Clin Invest, 114(10), 1518-1526. https://doi.org/10.1172/jci21889
Lucia, A., Gómez-Gallego, F., Barroso, I., Rabadán, M., Bandrés, F., San Juan, A. F., Chicharro, J. L., Ekelund, U., Brage, S., Earnest, C. P., Wareham, N. J., & Franks, P. W. (2005). PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men. J Appl Physiol (1985), 99(1), 344-348. https://doi.org/10.1152/japplphysiol.00037.2005
Maciejewska-Skrendo, A., Massidda, M., Tocco, F., & Leźnicka, K. (2022). The Influence of the Differentiation of Genes Encoding Peroxisome Proliferator-Activated Receptors and Their Coactivators on Nutrient and Energy Metabolism. Nutrients, 14(24), 5378. https://doi.org/10.3390/nu14245378
Maciejewska, A., Sawczuk, M., Cieszczyk, P., Mozhayskaya, I. A., & Ahmetov, II. (2012). The PPARGC1A gene Gly482Ser in Polish and Russian athletes. J Sports Sci, 30(1), 101-113. https://doi.org/10.1080/02640414.2011.623709
Magrani, P., & Pompeu, F. A. (2010). Equations for predicting aerobic power (VO(2)) of young Brazilian adults. Arq Bras Cardiol, 94(6), 763-770. https://doi.org/10.1590/s0066-782x2010005000054
Minges, K. E., Cormick, G., Unglik, E., & Dunstan, D. W. (2011). Evaluation of a resistance training program for adults with or at risk of developing diabetes: an effectiveness study in a community setting. Int J Behav Nutr Phys Act, 8, 50. https://doi.org/10.1186/1479-5868-8-50
Moraga Muñoz, R., Caniuqueo Vargas, A., Monsalves-Alvarez, M., Cresp Barría, M., Hernández Mosqueira, C., Roquetti Fernandes, P., & Fernandes Filho, J. (2021). Somatotipo y polimorfismo del gen ACTN3 y ECA en jugadores de tenis de mesa chilenos (Somatotype and polymorphism of the ACTN3 and ACE gene in Chilean table tennis players). Retos, 41(0), 791-797. https://doi.org/10.47197/retos.v41i0.81410
Morise, A. P. (2004). Heart rate recovery: predictor of risk today and target of therapy tomorrow? Circulation, 110(18), 2778-2780. https://doi.org/10.1161/01.Cir.0000147615.62634.48
Muniesa, C. A., González-Freire, M., Santiago, C., Lao, J. I., Buxens, A., Rubio, J. C., Martín, M. A., Arenas, J., Gomez-Gallego, F., & Lucia, A. (2010). World-class performance in lightweight rowing: is it genetically influenced? A comparison with cyclists, runners and non-athletes. Br J Sports Med, 44(12), 898-901. https://doi.org/10.1136/bjsm.2008.051680
Nishida, Y., Iyadomi, M., Higaki, Y., Tanaka, H., Kondo, Y., Otsubo, H., Horita, M., Hara, M., & Tanaka, K. (2015). Association between the PPARGC1A polymorphism and aerobic capacity in Japanese middle-aged men. Intern Med, 54(4), 359-366. https://doi.org/10.2169/internalmedicine.54.3170
Otsuki, T., Maeda, S., Iemitsu, M., Saito, Y., Tanimura, Y., Sugawara, J., Ajisaka, R., & Miyauchi, T. (2007). Postexercise heart rate recovery accelerates in strength-trained athletes. Med Sci Sports Exerc, 39(2), 365-370. https://doi.org/10.1249/01.mss.0000241647.13220.4c
Peters, M. J., van Nes, S. I., Vanhoutte, E. K., Bakkers, M., van Doorn, P. A., Merkies, I. S., & Faber, C. G. (2011). Revised normative values for grip strength with the Jamar dynamometer. J Peripher Nerv Syst, 16(1), 47-50. https://doi.org/10.1111/j.1529-8027.2011.00318.x
Petr, M., Stastny, P., Zajac, A., Tufano, J. J., & Maciejewska-Skrendo, A. (2018). The Role of Peroxisome Proliferator-Activated Receptors and Their Transcriptional Coactivators Gene Variations in Human Trainability: A Systematic Review. International Journal of Molecular Sciences, 19(5), 1472. https://doi.org/10.3390/ijms19051472
Popov, D. V. (2018). Adaptation of Skeletal Muscles to Contractile Activity of Varying Duration and Intensity: The Role of PGC-1α. Biochemistry Moscow, 83(6), 613-628. https://doi.org/10.1134/s0006297918060019
Popov, L. D. (2020). Mitochondrial biogenesis: An update. J Cell Mol Med, 24(9), 4892-4899. https://doi.org/10.1111/jcmm.15194
Qian, L., Zhu, Y., Deng, C., Liang, Z., Chen, J., Chen, Y., Wang, X., Liu, Y., Tian, Y., & Yang, Y. (2024). Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduction and Targeted Therapy, 9(1), 50. https://doi.org/10.1038/s41392-024-01756-w
Radovanovic, D., Bratic, M., Nurkic, M., Cvetkovic, T., Ignjatovic, A., & Aleksandrovic, M. (2009). Oxidative stress biomarker response to concurrent strength and endurance training. Gen Physiol Biophys, 28 Spec No, 205-211.
Ramos-Lopez, O. (2024). Genotype-based precision nutrition strategies for the prediction and clinical management of type 2 diabetes mellitus. World J Diabetes, 15(2), 142-153. https://doi.org/10.4239/wjd.v15.i2.142
Rius-Pérez, S., Torres-Cuevas, I., Millán, I., Ortega Á, L., & Pérez, S. (2020). PGC-1α, Inflammation, and Oxidative Stress: An Integrative View in Metabolism. Oxid Med Cell Longev, 2020, 1452696. https://doi.org/10.1155/2020/1452696
Salazar, L. A., Melo, C. E. d., Cavalli, S. A., Hinuy, H. M., Hirata, M. H., & Hirata, R. D. C. (2001). Micrométodo para extração de DNA genômico útil no diagnóstico molecular da hipercolesterolemia familial. Rev. Bras. Anal. Clin.,33(3):111-6, 2001.
Sarzynski, M. A., Ghosh, S., & Bouchard, C. (2017). Genomic and transcriptomic predictors of response levels to endurance exercise training. J Physiol, 595(9), 2931-2939. https://doi.org/10.1113/jp272559
Siafakas, N. M., Vermeire, P., Pride, N. B., Paoletti, P., Gibson, J., Howard, P., Yernault, J. C., Decramer, M., Higenbottam, T., Postma, D. S., & et al. (1995). Optimal assessment and management of chronic obstructive pulmonary disease (COPD). The European Respiratory Society Task Force. Eur Respir J, 8(8), 1398-1420. https://doi.org/10.1183/09031936.95.08081398
Silva Fagundes, L. H., de Sousa Pinheiro, G., Mendonça Pimenta, E., Neves Amorim, C. E., Pedra de Souza, R., & Teoldo da Costa, V. (2024). Asociación del polimorfismo MuRF-1/TRIM63 con lesiones musculares en futbolistas profesionales (Association of the MuRF-1/TRIM63 polymorphism with muscle injuries in professional soccer players). Retos, 57, 205-212. https://doi.org/10.47197/retos.v57.104261
Steinbacher, P., Feichtinger, R. G., Kedenko, L., Kedenko, I., Reinhardt, S., Schönauer, A. L., Leitner, I., Sänger, A. M., Stoiber, W., Kofler, B., Förster, H., Paulweber, B., & Ring-Dimitriou, S. (2015). The single nucleotide polymorphism Gly482Ser in the PGC-1α gene impairs exercise-induced slow-twitch muscle fibre transformation in humans. PLoS One, 10(4), e0123881. https://doi.org/10.1371/journal.pone.0123881
Stumvoll, M., Fritsche, A., t'Hart, L. M., Machann, J., Thamer, C., Tschritter, O., Van Haeften, T. W., Jacob, S., Dekker, J. M., Maassen, J. A., Machicao, F., Schick, F., Heine, R. J., & Häring, H. (2004). The Gly482Ser variant in the peroxisome proliferator-activated receptor gamma coactivator-1 is not associated with diabetes-related traits in non-diabetic German and Dutch populations. Exp Clin Endocrinol Diabetes, 112(5), 253-257. https://doi.org/10.1055/s-2004-817972
Tobina, T., Mori, Y., Doi, Y., Nakayama, F., Kiyonaga, A., & Tanaka, H. Peroxisome proliferator-activated receptor gamma co-activator 1 gene Gly482Ser polymorphism is associated with the response of low-density lipoprotein cholesterol concentrations to exercise training in elderly Japanese. The journal of physiological sciences : JPS, 67(5), 595–602. https://doi.org/10.1007/s12576-016-0491-y
Tural, E., Kara, N., Agaoglu, S. A., Elbistan, M., Tasmektepligil, M. Y., & Imamoglu, O. (2014). PPAR-α and PPARGC1A gene variants have strong effects on aerobic performance of Turkish elite endurance athletes. Mol Biol Rep, 41(9), 5799-5804. https://doi.org/10.1007/s11033-014-3453-6
Varillas-Delgado, D. (2024). Role of the PPARGC1A Gene and Its rs8192678 Polymorphism on Sport Performance, Aerobic Capacity, Muscle Adaptation and Metabolic Diseases: A Narrative Review. Genes, 15(12), 1631. https://doi.org/10.3390/genes15121631
Vimaleswaran, K. S., Radha, V., Anjana, M., Deepa, R., Ghosh, S., Majumder, P. P., Rao, M. R., & Mohan, V. (2006). Effect of polymorphisms in the PPARGC1A gene on body fat in Asian Indians. Int J Obes (Lond), 30(6), 884-891. https://doi.org/10.1038/sj.ijo.0803228
Vissing, K., & Schjerling, P. (2014). Simplified data access on human skeletal muscle transcriptome responses to differentiated exercise. Scientific Data, 1(1), 140041. https://doi.org/10.1038/sdata.2014.41
Vostrikova, A., Pechenkina, V., Danilova, M., Boronnikova, S., & Kalendar, R. (2022). Gene Polymorphism and Total Genetic Score in Martial Arts Athletes with Different Athletic Qualifications. Genes, 13(9), 1677. https://doi.org/10.3390/genes13091677
Wei, Q. (2023). Association between the PPARGC1A Gly482Ser polymorphism and muscle fitness in Chinese schoolchildren. PLOS ONE, 18(4), e0284827. https://doi.org/10.1371/journal.pone.0284827
Weng, S. W., Lin, T. K., Wang, P. W., Chen, I. Y., Lee, H. C., Chen, S. D., Chuang, Y. C., & Liou, C. W. (2010). Gly482Ser polymorphism in the peroxisome proliferator-activated receptor gamma coactivator-1alpha gene is associated with oxidative stress and abdominal obesity. Metabolism, 59(4), 581-586. https://doi.org/10.1016/j.metabol.2009.08.021
Yvert, T., Miyamoto-Mikami, E., Tobina, T., Shiose, K., Kakigi, R., Tsuzuki, T., Takaragawa, M., Ichinoseki-Sekine, N., Pérez, M., Kobayashi, H., Tanaka, H., Naito, H., & Fuku, N. (2020). PPARGC1A rs8192678 and NRF1 rs6949152 polymorphisms are associated with muscle fiber composition in women. Genes, 11(9), 101 . https://doi.org/10.3390/genes11091012
Zambrano, M., Fernández, E., López, M., Rangel, A., De Romero, P., Fernández, V., Morales, L. M., Molero-Conejo, E., Connell, L., Raleigh, X., & Aranguren-Mendez, J. (2009). Gly482Ser polymorphism of the coactivator-1α of the activated receptor of peroxisome γ proliferation in individuals from Maracaibo, Venezuela. Investigacion Clinica, 50(3), 285-294.
Zhang, Y., Xu, W., Li, X., Tang, Y., Xie, P., Ji, Y., Fan, L., & Chen, Q. (2008). Association between PPARGC1A gene polymorphisms and coronary artery disease in a Chinese population. Clin Exp Pharmacol Physiol, 35(10), 1172-1177. https://doi.org/10.1111/j.1440-1681.2008.04988.x
Zhu, S., Liu, Y., Wang, X., Wu, X., Zhu, X., Li, J., Ma, J., Gu, H. F., & Liu, Y. (2009). Evaluation of the association between the PPARGC1A genetic polymorphisms and type 2 diabetes in Han Chinese population. Diabetes Res Clin Pract, 86(3), 168-172. https://doi.org/10.1016/j.diabres.2009.09.020
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Gabriel Alfonso Rojas, Cristian Alvarez, Sandra Becerra, Cesar Bascuñan, Andrea Gonzalez Rojas, Alejandro Pacheco Valles, José Luis Márquez

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess