Principales variables que predicen la competencia motora: análisis con árboles de clasificación

Autores/as

DOI:

https://doi.org/10.47197/retos.v68.113239

Palabras clave:

Competencia motora, actividad física, dispositivos con pantalla, masa corporal, niños, CRISP-DM

Resumen

Introducción: La competencia motora es una variable que marca la vida del ser humano. Por tal razón, realizar estudios de predicción que expliquen el comportamiento de esta es trascendental.

Objetivo: El propósito del estudio fue explorar las principales variables que predicen la competencia motora según el análisis con árboles de clasificación.

Método: Participaron 291 niños peruanos de 6 a 10 años (M=8.35; DE=1.29), a quienes se les aplicó el test de desarrollo motor grueso; una prueba de matemática y lectura; un cuestionario sociodemográfico; y se les realizó las mediciones de masa corporal y estatura.

Resultados: Los resultados de predicción presentaron un modelo inicial con 22 nodos terminales con el 65.52 % de precisión, y un modelo optimizado con 10 nodos terminales con el 68.34 % de precisión.

Discusión: Este es el primer estudio que aplica el aprendizaje automático mediante el modelo árbol de clasificación en base a la metodología CRISP-DM para explorar las principales variables que predicen la competencia motora en niños de 6 a 10 años.

Conclusiones: Este estudio confirma que el aprendizaje automático mediante el modelo árbol de clasificación en base a la metodología CRISP-DM puede predecir la competencia motora en niños de 6 a 10 años con una precisión de 68.34 %, siendo las horas de práctica de actividad física al día la variable más importante, además de las horas de uso de dispositivos con pantalla al día y la masa corporal de siete variables.

Biografía del autor/a

Angel Anibal Mamani-Ramos, Universidad Nacional Mayor de San Marcos

Docente de la Universidad Nacional Mayor de San Marcos, Lima, Perú

Citas

Allen, K. A., Bredero, B., Van, T., Ulrich, D. A., & Simons, J. (2017). Test of Gross Motor Development-3 (TGMD-3) with the Use of Visual Supports for Children with Autism Spectrum Disorder: Validity and Reliability. Journal of Autism and Developmental Disorders, 47(3), 813–833. https://doi.org/10.1007/s10803-016-3005-0

Aoyama, T., Hikihara, Y., Watanabe, M., Wakabayashi, H., Hanawa, S., Omi, N., Takimoto, H., & Tanaka, S. (2022). Association between age of achieving gross motor development milestones during infancy and body fat percentage at 6 to 7 years of age. Maternal and Child Health Journal, 26(2), 415–423. https://doi.org/10.1007/s10995-021-03238-9

Banjevic, B., Aleksic, D., Aleksic Veljkovic, A., Katanic, B., & Masanovic, B. (2022). Differences between Healthy-Weight and Overweight Serbian Preschool Children in Motor and Cognitive Abilities. International Journal of Environmental Research and Public Health, 19(18), 11325. https://doi.org/10.3390/ijerph191811325

Barnett, L. M., Jerebine, A., Keegan, R., Watson-Mackie, K., Arundell, L., Ridgers, N. D., Salmon, J., & Dudley, D. (2023). Validity, Reliability, and Feasibility of Physical Literacy Assessments Designed for School Children: A Systematic Review. Sports Medicine, 53(10), 1905–1929. https://doi.org/10.1007/s40279-023-01867-4

Batez, M., Milošević, Ž., Mikulić, I., Sporiš, G., MačAk, D., & Trajković, N. (2021). Relationship between motor competence, physical fitness, and academic achievement in young school-aged children. BioMed Research International, 2021, 6631365. https://doi.org/10.1155/2021/6631365

Bautista, A., Moreno-Núñez, A., Vijayakumar, P., Quek, E., & Bull, R. (2020). Gross motor teaching in preschool education: where, what and how do Singapore educators teach? Journal for the Study of Education and Development, 43(2), 443–482. https://doi.org/10.1080/02103702.2019.1653057

Behan, S., Belton, S., Peers, C., O’Connor, N. E., & Issartel, J. (2019). Moving Well-Being Well: Investigating the maturation of fundamental movement skill proficiency across sex in Irish children aged five to twelve. Journal of Sports Sciences, 37(22), 2604–2612. https://doi.org/10.1080/02640414.2019.1651144

Bongiovanni, T., Trecroci, A., Cavaggioni, L., Rossi, A., Perri, E., Pasta, G., Iaia, F. M., & Alberti, G. (2021). Importance of anthropometric features to predict physical performance in elite youth soccer: a machine learning approach. Research in Sports Medicine, 29(3), 213–224. https://doi.org/10.1080/15438627.2020.1809410

Brian, A., Bardid, F., Barnett, L. M., Deconinck, F. J. A., Lenoir, M., & Goodway, J. D. (2018). Actual and Perceived Motor Competence Levels of Belgian and United States Preschool Children. Journal of Motor Learning and Development, 6(s2), S320–S336. https://doi.org/10.1123/jmld.2016-0071

Bunker, R. P., & Thabtah, F. (2019). A machine learning framework for sport result prediction. Applied Computing and Informatics, 15(1), 27–33. https://doi.org/10.1016/j.aci.2017.09.005

Bzdok, D., Altman, N., & Krzywinski, M. (2018). Statistics versus machine learning. Nature Methods, 15(4), 233–234. https://doi.org/10.1038/nmeth.4642

Centers for Disease Control and Prevention. (2019). Increasing Physical Education and Physical Activity: A Framework for Schools 2019. https://www.cdc.gov/healthyschools/physicalactivity/pdf/2019_04_25_PE-PA-Framework_508tagged.pdf

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0 Step-by-step data mining guide. SPSS Inc.

Common Sense Media. (2017). The Common Sense Census: Media Use by Kids Age Zero to Eight, 2017. https://www.commonsensemedia.org/research/the-common-sense-census-media-use-by-kids-age-zero-to-eight-2017

Costa, J. A., Vale, S., Cordovil, R., Rodrigues, L. P., Cardoso, V., Proença, R., Costa, M., Neto, C., Brito, J., Guilherme, J., & Seabra, A. (2024). A school-based physical activity intervention in primary school: effects on physical activity, sleep, aerobic fitness, and motor competence. Frontiers in Public Health, 12(February), 1–10. https://doi.org/10.3389/fpubh.2024.1365782

Donges, N. (2024). Random Forest: A Complete Guide for Machine Learning. All you need to know about the random forest model in machine learning. Built In. https://builtin.com/data-science/random-forest-algorithm

Duncan, M. J., Eyre, E. L. J., Clarke, N., Hamid, A., & Jing, Y. (2024). Importance of fundamental movement skills to predict technical skills in youth grassroots soccer: A machine learning approach. International Journal of Sports Science & Coaching, 19(3), 1042–1049. https://doi.org/10.1177/17479541231202015

Duncan, M. J., Martins, C., Ribeiro Bandeira, P. F., Issartel, J., Peers, C., Belton, S., O’Connor, N. E., & Behan, S. (2022). TGMD-3 short version: Evidence of validity and associations with sex in Irish children. Journal of Sports Sciences, 40(2), 138–145. https://doi.org/10.1080/02640414.2021.1978161

Duncan, M. J., Roscoe, C. M., Noon, M., Clark, C. C., O’Brien, W., & Eyre, E. L. (2019). Run, jump, throw and catch: How proficient are children attending English schools at the fundamental motor skills identified as key within the school curriculum? European Physical Education Review, 26(4), 814–826. https://doi.org/10.1177/1356336X19888953

Firdaus, M., Izzah, A. N., Kairan, O., Sofea, N. N., Naim, N., & Maisarah, N. (2023). The prediction of student’s academic performance using RapidMiner. Indonesian Journal of Electrical Engineering and Computer Science, 32(1), 363–371. https://doi.org/10.11591/ijeecs.v32.i1.pp363-371

Gao, Z., Wen, X., Fu, Y., Lee, J. E., & Zeng, N. (2021). Motor skill competence matters in promoting physical activity and health. BioMed Research International, 2021, 9786368. https://doi.org/10.1155/2021/9786368

Geurkink, Y., Boone, J., Verstockt, S., & Bourgois, J. G. (2021). Machine Learning-Based Identification of the Strongest Predictive Variables of Winning and Losing in Belgian Professional Soccer. Applied Sciences, 11(5), 2378. https://doi.org/10.3390/app11052378

Godoy-Cumillaf, A., Fuentes-Merino, P., Giakoni-Ramírez, F., Duclos-Bastías, D., Bruneau-Chávez, J., & Merellano-Navarro, E. (2024). The Effects of a Physical Activity Intervention on Adiposity, Physical Fitness and Motor Competence: A School-Based, Non-Randomized Controlled Trial. Children, 11(1), 137. https://doi.org/10.3390/children11010137

González-Sanmamed, M., Losada-Puente, L., Rebollo-Quintela, N., & Rodríguez-Machado, E. (2023). Uso de los dispositivos móviles en la infancia: Oportunidades y peligros. Psychology, Society & Education, 15(3), 1–9. https://doi.org/10.21071/pse.v15i3.16103

Gosselin, V., Leone, M., & Laberge, S. (2021). Socioeconomic and gender-based disparities in the motor competence of school-age children. Journal of Sports Sciences, 39(3), 341–350. https://doi.org/10.1080/02640414.2020.1822585

Griffiths, A., Toovey, R., Morgan, P. E., & Spittle, A. J. (2018). Psychometric properties of gross motor assessment tools for children: a systematic review. BMJ Open, 8(10), e021734. https://doi.org/10.1136/bmjopen-2018-021734

Guthold, R., Stevens, G. A., Riley, L. M., & Bull, F. C. (2018). Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million participants. The Lancet Global Health, 6(10), e1077–e1086. https://doi.org/10.1016/S2214-109X(18)30357-7

Guthold, R., Stevens, G. A., Riley, L. M., & Bull, F. C. (2020). Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1·6 million participants. The Lancet Child and Adolescent Health, 4(1), 23–35. https://doi.org/10.1016/S2352-4642(19)30323-2

Hill, D., Ameenuddin, N., Reid, Y., Cross, C., Hutchinson, J., Levine, A., Boyd, R., Mendelson, R., Moreno, M., & Swanson, W. S. (2016). Media and Young Minds. Pediatrics, 138(5), e20162591. https://doi.org/10.1542/peds.2016-2591

Hosokawa, R., & Katsura, T. (2018). Association between mobile technology use and child adjustment in early elementary school age. PLOS ONE, 13(7), e0199959. https://doi.org/10.1371/journal.pone.0199959

John, A., Wainwright, N., Goodway, J. D., & Williams, A. (2024). The Relationship between Physical Activity and Motor Competence of Foundation Phase Children in Wales during the School Day. Children, 11(6), 629. https://doi.org/10.3390/children11060629

Kelly, L., Connor, S. O., Harrison, A. J., Chéilleachair, N. J. N., Kelly, L., Connor, S. O., Harrison, A. J., Chéilleachair, N. J. N., Kelly, L., & Connor, S. O. (2018). Does fundamental movement skill proficiency vary by sex , class group or weight status ? Evidence from an Irish primary school setting Does fundamental movement skill proficiency vary by sex , class group or weight status ? Evidence from an Irish primary . Journal of Sports Sciences, 00(00), 1–9. https://doi.org/10.1080/02640414.2018.1543833

Kujawa, M. J., Marcinkowska, A. B., Grzywińska, M., Waśkow, M., Romanowski, A., Szurowska, E., Winklewski, P. J., & Szarmach, A. (2023). Physical activity and the brain myelin content in humans. Frontiers in Cellular Neuroscience, 17. https://doi.org/10.3389/fncel.2023.1198657

Lee, S., & Kang, M. (2024). A Data-Driven Approach to Predicting Recreational Activity Participation Using Machine Learning. Research Quarterly for Exercise and Sport, 29(3), 1–13. https://doi.org/10.1080/02701367.2024.2343815

Lopes, O., Malina, R., & Lopes, V. (2022). Variation in physical activity, fitness and motor competence according to weight status of 12-15 years youngsters from Cabo Verde. Cuadernos de Psicología Del Deporte, 22(2), 294–306. https://doi.org/10.6018/cpd.458471

López, D. (2024). Habilidades motrices fundamentales en niños de un colegio privado del distrito de San Juan de Lurigancho, Lima [Tesis de licenciatura, Universidad Nacional Mayor de San Marcos]. https://cybertesis.unmsm.edu.pe/item/ef8d4517-1ea0-4fd9-9b9d-7932b62b5362

Macdonald, K., Milne, N., Orr, R., & Pope, R. (2018). Relationships between Motor Proficiency and Academic Performance in Mathematics and Reading in School-Aged Children and Adolescents: A Systematic Review. International Journal of Environmental Research and Public Health, 15(8), 1603. https://doi.org/10.3390/ijerph15081603

Macdonald, K., Milne, N., Orr, R., & Pope, R. (2020). Associations between motor proficiency and academic performance in mathematics and reading in year 1 school children: a cross-sectional study. BMC Pediatrics, 20(1), 69. https://doi.org/10.1186/s12887-020-1967-8

Madigan, S., Browne, D., Racine, N., Mori, C., & Tough, S. (2019). Association Between Screen Time and Children’s Performance on a Developmental Screening Test. JAMA Pediatrics, 173(3), 244–250. https://doi.org/10.1001/jamapediatrics.2018.5056

Mamani-Ramos, A. A., Damian-Nuñez, E. F., Torres-Cruz, F., Dextre-Mendoza, C. W., Alcarraz-Curi, M., Quisocala-Ramos, J. A., Mamani-Cari, Y. A., Roncal-Serpa, F. R., Quispe-Cruz, H., Paucar-Pancca, A., & Montoya-Castillo, P. M. (2023). Propiedades psicométricas de la versión peruana del Test de Desarrollo Motor Grueso – Tercera Edición. Retos, 50, 1180–1187. https://doi.org/10.47197/retos.v50.100031

Mamani-Ramos, A. A., Damian-Nuñez, E. F., Yabar-Geldres, I. A., Quisocala-Ramos, J. A., Zavala-Bustios, R., Soria-Villanueva, L. M., Soto-Zedano, F. A., Diaz-Barboza, M. A., Vivar-Cueva, J. A., Quispe-Cruz, H., Sardón-Ari, D. L., Tapia-Centellas, Y. Y., Cutimbo-Quispe, C. V., & Rodriguez-Mamani, J. R. (2024). Correlaciones entre la competencia motora con el medio natural, la actividad física, y la satisfacción por el juego motor en niños peruanos. Retos, 60, 695–703. https://doi.org/10.47197/retos.v60.108272

Mamani-Ramos, A. A., Dextre-Mendoza, C. W., Lava, J. J., Ticona, G., Quispe, L. M., Torres-Cruz, F., Quisocala, J. A., & Fuentes-López, J. D. (2020). Gross motor development in preschoolers on the islands of Lake Titicaca (3810 m.a.s.l.), Puno, Peru (Desarrollo motor grueso en preescolares de las islas del lago Titicaca (3810 m s. n. m.), Puno, Perú). Retos, 39(39), 592–597. https://doi.org/10.47197/retos.v0i39.79522

Ministerio de Educación de Perú. (2022). Decreto Supremo N° 014-2022-Minedu. El Peruano. https://www.gob.pe/institucion/minedu/normas-legales/3490243-014-2022-minedu-parte-1

Montoya, P. M. (2023). Desarrollo motor grueso y nivel socioeconomico en niños de dos instituciones de educacion primaria de Lima, Perú [Tesis de licenciatura, Universidad Nacional Mayor de San Marcos]. https://hdl.handle.net/20.500.12672/20405

Moon, J., Webster, C. A., Stodden, D. F., Brian, A., Mulvey, K. L., Beets, M., Egan, C. A., McIntosh, L. I. F., Merica, C. B., & Russ, L. (2024). Systematic review and meta-analysis of physical activity interventions to increase elementary children’s motor competence: a comprehensive school physical activity program perspective. BMC Public Health, 24(1), 826. https://doi.org/10.1186/s12889-024-18145-1

Nobre, G. C., Valentini, N. C., & Nobre, F. S. S. (2018). Fundamental motor skills, nutritional status, perceived competence, and school performance of Brazilian children in social vulnerability: Gender comparison. Child Abuse & Neglect, 80, 335–345. https://doi.org/10.1016/j.chiabu.2018.04.007

Organización Mundial de la Salud. (2014). Metas mundiales de nutrición 2025 Documento normativo sobre retraso del crecimiento. WHO, 9, 1–12.

Philpott, C., Donovan, B., Belton, S., Lester, D., Duncan, M., Chambers, F., & O’Brien, W. (2020). Investigating the Age-Related Association between Perceived Motor Competence and Actual Motor Competence in Adolescence. International Journal of Environmental Research and Public Health, 17(17), 6361. https://doi.org/10.3390/ijerph17176361

Reyes, E. (2023). Desarrollo motor grueso y estado nutricional en niños de educación primaria de una institución pública del distrito de San Martín de Porres, Lima [Tesis de licenciatura, Universidad Nacional Mayor de San Marcos]. https://cybertesis.unmsm.edu.pe/handle/20.500.12672/20780

Rodríguez-Briceño, D., Castro-Vilugrón, F., Diaz-Alvarado, M., & Carcamo-Oyarzun, J. (2022). La competencia motriz en estudiantes chilenos de 3° y 4° de educación básica. Aprendizajes esperados versus realidad. Retos, 45, 515–524. https://doi.org/10.47197/RETOS.V44I0.91095

Rommers, N., Rössler, R., Verhagen, E., Vandecasteele, F., Verstockt, S., Vaeyens, R., Lenoir, M., D’Hondt, E., & Witvrouw, E. (2020). A Machine Learning Approach to Assess Injury Risk in Elite Youth Football Players. Medicine & Science in Sports & Exercise, 52(8), 1745–1751. https://doi.org/10.1249/MSS.0000000000002305

Salami, S., Ribeiro, P. F., Rahymian, M., Shamsipour, P., Luz, L., de Lucena, C. M., Hardy, L. L., & Duncan, M. J. (2024). Associations between Biological Maturation, Chronological Age, Body Mass Index, Sex, and Motor Competence in Prepubertal Children: A Network Analysis. Children, 11(9), 1143. https://doi.org/10.3390/children11091143

Sánchez, A. (2023). Desarrollo motor grueso y desempeño escolar en niños de educación primaria de una institución particular del distrito de San Isidro, Lima [Tesis de licenciatura, Universidad Nacional Mayor de San Marcos]. https://cybertesis.unmsm.edu.pe/handle/20.500.12672/20404

Sania, A., Sudfeld, C. R., Danaei, G., Fink, G., McCoy, D. C., Zhu, Z., Fawzi, M. C. S., Akman, M., Arifeen, S. E., Barros, A. J. D., Bellinger, D., Black, M. M., Bogale, A., Braun, J. M., van den Broek, N., Carrara, V., Duazo, P., Duggan, C., Fernald, L. C. H., … Fawzi, W. (2019). Early life risk factors of motor, cognitive and language development: a pooled analysis of studies from low/middle-income countries. BMJ Open, 9(10), e026449. https://doi.org/10.1136/bmjopen-2018-026449

Schröer, C., Kruse, F., & Gómez, J. M. (2021). A Systematic Literature Review on Applying CRISP-DM Process Model. Procedia Computer Science, 181(2019), 526–534. https://doi.org/10.1016/j.procs.2021.01.199

Sharma, A., Cogley, A. C., & Tonon, S. S. (2000). The CRISP-DM Model: The New Blueprint for Data Mining. Journal of Data Warehousing, 5(4), 13–22. https://acortar.link/1HUYYE

Silva, J. C., Coelho, J., & Miguéis, V. L. (2024). Factors influencing the use of information and communication technologies by students for educational purposes. Education and Information Technologies, 29(8), 9313–9353. https://doi.org/10.1007/s10639-023-12132-6

Stodden, D. F., Langendorfer, S. J., Goodway, J. D., Roberton, M. A., Rudisill, M. E., Garcia, C., & Garcia, L. E. (2008). A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest, 60(2), 290–306. https://doi.org/10.1080/00336297.2008.10483582

Sutapa, Y. G., Puspita, I. D., Amir, A., Haetami, M., Sinulingga, A., Ngurah, I. G. P., Syam, A., Dewintha, R., & Wijaya, C. (2024). Does being physically active and engaged affect reading ability? A review of the literature. Retos, 61, 598–605. https://doi.org/10.47197/retos.v61.109559

Wirth, R., & Hipp, J. (2000). CRISP-DM: towards a standard process model for data mining. Proceedings of the Fourth International Conference on the Practical Application of Knowledge Discovery and Data Mining, 29-39. Proceedings of the Fourth International Conference on the Practical Application of Knowledge Discovery and Data Mining, 24959, 29–39. https://www.researchgate.net/publication/239585378_CRISP-DM_Towards_a_standard_process_model_for_data_mining

World Health Organization. (2023). Growth reference data for 5-19 years. WHO. https://www.who.int/tools/growth-reference-data-for-5to19-years/application-tools

Zhang, D., Chen, S., Xin, F., Drenowatz, C., Hu, X., & Tang, Y. (2024). Associations between fundamental movement skills and accelerometer-measured physical activity in Chinese children: the mediating role of cardiorespiratory fitness. PeerJ, 12(6), e17564. https://doi.org/10.7717/peerj.17564

Descargas

Publicado

2025-05-16

Cómo citar

Mamani-Ramos, A. A., Damian-Nuñez, E. F., Carpio-Vargas, E. E., Mujica-Bermúdez, I., Pérez-Reátegui, C. M., Botton-Estrada, L. M., … Lava-Gálvez, J. J. (2025). Principales variables que predicen la competencia motora: análisis con árboles de clasificación. Retos, 68, 318–330. https://doi.org/10.47197/retos.v68.113239

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a