Principales variables que predicen la competencia motora: análisis con árboles de clasificación
DOI:
https://doi.org/10.47197/retos.v68.113239Palabras clave:
Competencia motora, actividad física, dispositivos con pantalla, masa corporal, niños, CRISP-DMResumen
Introducción: La competencia motora es una variable que marca la vida del ser humano. Por tal razón, realizar estudios de predicción que expliquen el comportamiento de esta es trascendental.
Objetivo: El propósito del estudio fue explorar las principales variables que predicen la competencia motora según el análisis con árboles de clasificación.
Método: Participaron 291 niños peruanos de 6 a 10 años (M=8.35; DE=1.29), a quienes se les aplicó el test de desarrollo motor grueso; una prueba de matemática y lectura; un cuestionario sociodemográfico; y se les realizó las mediciones de masa corporal y estatura.
Resultados: Los resultados de predicción presentaron un modelo inicial con 22 nodos terminales con el 65.52 % de precisión, y un modelo optimizado con 10 nodos terminales con el 68.34 % de precisión.
Discusión: Este es el primer estudio que aplica el aprendizaje automático mediante el modelo árbol de clasificación en base a la metodología CRISP-DM para explorar las principales variables que predicen la competencia motora en niños de 6 a 10 años.
Conclusiones: Este estudio confirma que el aprendizaje automático mediante el modelo árbol de clasificación en base a la metodología CRISP-DM puede predecir la competencia motora en niños de 6 a 10 años con una precisión de 68.34 %, siendo las horas de práctica de actividad física al día la variable más importante, además de las horas de uso de dispositivos con pantalla al día y la masa corporal de siete variables.
Citas
Allen, K. A., Bredero, B., Van, T., Ulrich, D. A., & Simons, J. (2017). Test of Gross Motor Development-3 (TGMD-3) with the Use of Visual Supports for Children with Autism Spectrum Disorder: Validity and Reliability. Journal of Autism and Developmental Disorders, 47(3), 813–833. https://doi.org/10.1007/s10803-016-3005-0
Aoyama, T., Hikihara, Y., Watanabe, M., Wakabayashi, H., Hanawa, S., Omi, N., Takimoto, H., & Tanaka, S. (2022). Association between age of achieving gross motor development milestones during infancy and body fat percentage at 6 to 7 years of age. Maternal and Child Health Journal, 26(2), 415–423. https://doi.org/10.1007/s10995-021-03238-9
Banjevic, B., Aleksic, D., Aleksic Veljkovic, A., Katanic, B., & Masanovic, B. (2022). Differences between Healthy-Weight and Overweight Serbian Preschool Children in Motor and Cognitive Abilities. International Journal of Environmental Research and Public Health, 19(18), 11325. https://doi.org/10.3390/ijerph191811325
Barnett, L. M., Jerebine, A., Keegan, R., Watson-Mackie, K., Arundell, L., Ridgers, N. D., Salmon, J., & Dudley, D. (2023). Validity, Reliability, and Feasibility of Physical Literacy Assessments Designed for School Children: A Systematic Review. Sports Medicine, 53(10), 1905–1929. https://doi.org/10.1007/s40279-023-01867-4
Batez, M., Milošević, Ž., Mikulić, I., Sporiš, G., MačAk, D., & Trajković, N. (2021). Relationship between motor competence, physical fitness, and academic achievement in young school-aged children. BioMed Research International, 2021, 6631365. https://doi.org/10.1155/2021/6631365
Bautista, A., Moreno-Núñez, A., Vijayakumar, P., Quek, E., & Bull, R. (2020). Gross motor teaching in preschool education: where, what and how do Singapore educators teach? Journal for the Study of Education and Development, 43(2), 443–482. https://doi.org/10.1080/02103702.2019.1653057
Behan, S., Belton, S., Peers, C., O’Connor, N. E., & Issartel, J. (2019). Moving Well-Being Well: Investigating the maturation of fundamental movement skill proficiency across sex in Irish children aged five to twelve. Journal of Sports Sciences, 37(22), 2604–2612. https://doi.org/10.1080/02640414.2019.1651144
Bongiovanni, T., Trecroci, A., Cavaggioni, L., Rossi, A., Perri, E., Pasta, G., Iaia, F. M., & Alberti, G. (2021). Importance of anthropometric features to predict physical performance in elite youth soccer: a machine learning approach. Research in Sports Medicine, 29(3), 213–224. https://doi.org/10.1080/15438627.2020.1809410
Brian, A., Bardid, F., Barnett, L. M., Deconinck, F. J. A., Lenoir, M., & Goodway, J. D. (2018). Actual and Perceived Motor Competence Levels of Belgian and United States Preschool Children. Journal of Motor Learning and Development, 6(s2), S320–S336. https://doi.org/10.1123/jmld.2016-0071
Bunker, R. P., & Thabtah, F. (2019). A machine learning framework for sport result prediction. Applied Computing and Informatics, 15(1), 27–33. https://doi.org/10.1016/j.aci.2017.09.005
Bzdok, D., Altman, N., & Krzywinski, M. (2018). Statistics versus machine learning. Nature Methods, 15(4), 233–234. https://doi.org/10.1038/nmeth.4642
Centers for Disease Control and Prevention. (2019). Increasing Physical Education and Physical Activity: A Framework for Schools 2019. https://www.cdc.gov/healthyschools/physicalactivity/pdf/2019_04_25_PE-PA-Framework_508tagged.pdf
Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0 Step-by-step data mining guide. SPSS Inc.
Common Sense Media. (2017). The Common Sense Census: Media Use by Kids Age Zero to Eight, 2017. https://www.commonsensemedia.org/research/the-common-sense-census-media-use-by-kids-age-zero-to-eight-2017
Costa, J. A., Vale, S., Cordovil, R., Rodrigues, L. P., Cardoso, V., Proença, R., Costa, M., Neto, C., Brito, J., Guilherme, J., & Seabra, A. (2024). A school-based physical activity intervention in primary school: effects on physical activity, sleep, aerobic fitness, and motor competence. Frontiers in Public Health, 12(February), 1–10. https://doi.org/10.3389/fpubh.2024.1365782
Donges, N. (2024). Random Forest: A Complete Guide for Machine Learning. All you need to know about the random forest model in machine learning. Built In. https://builtin.com/data-science/random-forest-algorithm
Duncan, M. J., Eyre, E. L. J., Clarke, N., Hamid, A., & Jing, Y. (2024). Importance of fundamental movement skills to predict technical skills in youth grassroots soccer: A machine learning approach. International Journal of Sports Science & Coaching, 19(3), 1042–1049. https://doi.org/10.1177/17479541231202015
Duncan, M. J., Martins, C., Ribeiro Bandeira, P. F., Issartel, J., Peers, C., Belton, S., O’Connor, N. E., & Behan, S. (2022). TGMD-3 short version: Evidence of validity and associations with sex in Irish children. Journal of Sports Sciences, 40(2), 138–145. https://doi.org/10.1080/02640414.2021.1978161
Duncan, M. J., Roscoe, C. M., Noon, M., Clark, C. C., O’Brien, W., & Eyre, E. L. (2019). Run, jump, throw and catch: How proficient are children attending English schools at the fundamental motor skills identified as key within the school curriculum? European Physical Education Review, 26(4), 814–826. https://doi.org/10.1177/1356336X19888953
Firdaus, M., Izzah, A. N., Kairan, O., Sofea, N. N., Naim, N., & Maisarah, N. (2023). The prediction of student’s academic performance using RapidMiner. Indonesian Journal of Electrical Engineering and Computer Science, 32(1), 363–371. https://doi.org/10.11591/ijeecs.v32.i1.pp363-371
Gao, Z., Wen, X., Fu, Y., Lee, J. E., & Zeng, N. (2021). Motor skill competence matters in promoting physical activity and health. BioMed Research International, 2021, 9786368. https://doi.org/10.1155/2021/9786368
Geurkink, Y., Boone, J., Verstockt, S., & Bourgois, J. G. (2021). Machine Learning-Based Identification of the Strongest Predictive Variables of Winning and Losing in Belgian Professional Soccer. Applied Sciences, 11(5), 2378. https://doi.org/10.3390/app11052378
Godoy-Cumillaf, A., Fuentes-Merino, P., Giakoni-Ramírez, F., Duclos-Bastías, D., Bruneau-Chávez, J., & Merellano-Navarro, E. (2024). The Effects of a Physical Activity Intervention on Adiposity, Physical Fitness and Motor Competence: A School-Based, Non-Randomized Controlled Trial. Children, 11(1), 137. https://doi.org/10.3390/children11010137
González-Sanmamed, M., Losada-Puente, L., Rebollo-Quintela, N., & Rodríguez-Machado, E. (2023). Uso de los dispositivos móviles en la infancia: Oportunidades y peligros. Psychology, Society & Education, 15(3), 1–9. https://doi.org/10.21071/pse.v15i3.16103
Gosselin, V., Leone, M., & Laberge, S. (2021). Socioeconomic and gender-based disparities in the motor competence of school-age children. Journal of Sports Sciences, 39(3), 341–350. https://doi.org/10.1080/02640414.2020.1822585
Griffiths, A., Toovey, R., Morgan, P. E., & Spittle, A. J. (2018). Psychometric properties of gross motor assessment tools for children: a systematic review. BMJ Open, 8(10), e021734. https://doi.org/10.1136/bmjopen-2018-021734
Guthold, R., Stevens, G. A., Riley, L. M., & Bull, F. C. (2018). Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million participants. The Lancet Global Health, 6(10), e1077–e1086. https://doi.org/10.1016/S2214-109X(18)30357-7
Guthold, R., Stevens, G. A., Riley, L. M., & Bull, F. C. (2020). Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1·6 million participants. The Lancet Child and Adolescent Health, 4(1), 23–35. https://doi.org/10.1016/S2352-4642(19)30323-2
Hill, D., Ameenuddin, N., Reid, Y., Cross, C., Hutchinson, J., Levine, A., Boyd, R., Mendelson, R., Moreno, M., & Swanson, W. S. (2016). Media and Young Minds. Pediatrics, 138(5), e20162591. https://doi.org/10.1542/peds.2016-2591
Hosokawa, R., & Katsura, T. (2018). Association between mobile technology use and child adjustment in early elementary school age. PLOS ONE, 13(7), e0199959. https://doi.org/10.1371/journal.pone.0199959
John, A., Wainwright, N., Goodway, J. D., & Williams, A. (2024). The Relationship between Physical Activity and Motor Competence of Foundation Phase Children in Wales during the School Day. Children, 11(6), 629. https://doi.org/10.3390/children11060629
Kelly, L., Connor, S. O., Harrison, A. J., Chéilleachair, N. J. N., Kelly, L., Connor, S. O., Harrison, A. J., Chéilleachair, N. J. N., Kelly, L., & Connor, S. O. (2018). Does fundamental movement skill proficiency vary by sex , class group or weight status ? Evidence from an Irish primary school setting Does fundamental movement skill proficiency vary by sex , class group or weight status ? Evidence from an Irish primary . Journal of Sports Sciences, 00(00), 1–9. https://doi.org/10.1080/02640414.2018.1543833
Kujawa, M. J., Marcinkowska, A. B., Grzywińska, M., Waśkow, M., Romanowski, A., Szurowska, E., Winklewski, P. J., & Szarmach, A. (2023). Physical activity and the brain myelin content in humans. Frontiers in Cellular Neuroscience, 17. https://doi.org/10.3389/fncel.2023.1198657
Lee, S., & Kang, M. (2024). A Data-Driven Approach to Predicting Recreational Activity Participation Using Machine Learning. Research Quarterly for Exercise and Sport, 29(3), 1–13. https://doi.org/10.1080/02701367.2024.2343815
Lopes, O., Malina, R., & Lopes, V. (2022). Variation in physical activity, fitness and motor competence according to weight status of 12-15 years youngsters from Cabo Verde. Cuadernos de Psicología Del Deporte, 22(2), 294–306. https://doi.org/10.6018/cpd.458471
López, D. (2024). Habilidades motrices fundamentales en niños de un colegio privado del distrito de San Juan de Lurigancho, Lima [Tesis de licenciatura, Universidad Nacional Mayor de San Marcos]. https://cybertesis.unmsm.edu.pe/item/ef8d4517-1ea0-4fd9-9b9d-7932b62b5362
Macdonald, K., Milne, N., Orr, R., & Pope, R. (2018). Relationships between Motor Proficiency and Academic Performance in Mathematics and Reading in School-Aged Children and Adolescents: A Systematic Review. International Journal of Environmental Research and Public Health, 15(8), 1603. https://doi.org/10.3390/ijerph15081603
Macdonald, K., Milne, N., Orr, R., & Pope, R. (2020). Associations between motor proficiency and academic performance in mathematics and reading in year 1 school children: a cross-sectional study. BMC Pediatrics, 20(1), 69. https://doi.org/10.1186/s12887-020-1967-8
Madigan, S., Browne, D., Racine, N., Mori, C., & Tough, S. (2019). Association Between Screen Time and Children’s Performance on a Developmental Screening Test. JAMA Pediatrics, 173(3), 244–250. https://doi.org/10.1001/jamapediatrics.2018.5056
Mamani-Ramos, A. A., Damian-Nuñez, E. F., Torres-Cruz, F., Dextre-Mendoza, C. W., Alcarraz-Curi, M., Quisocala-Ramos, J. A., Mamani-Cari, Y. A., Roncal-Serpa, F. R., Quispe-Cruz, H., Paucar-Pancca, A., & Montoya-Castillo, P. M. (2023). Propiedades psicométricas de la versión peruana del Test de Desarrollo Motor Grueso – Tercera Edición. Retos, 50, 1180–1187. https://doi.org/10.47197/retos.v50.100031
Mamani-Ramos, A. A., Damian-Nuñez, E. F., Yabar-Geldres, I. A., Quisocala-Ramos, J. A., Zavala-Bustios, R., Soria-Villanueva, L. M., Soto-Zedano, F. A., Diaz-Barboza, M. A., Vivar-Cueva, J. A., Quispe-Cruz, H., Sardón-Ari, D. L., Tapia-Centellas, Y. Y., Cutimbo-Quispe, C. V., & Rodriguez-Mamani, J. R. (2024). Correlaciones entre la competencia motora con el medio natural, la actividad física, y la satisfacción por el juego motor en niños peruanos. Retos, 60, 695–703. https://doi.org/10.47197/retos.v60.108272
Mamani-Ramos, A. A., Dextre-Mendoza, C. W., Lava, J. J., Ticona, G., Quispe, L. M., Torres-Cruz, F., Quisocala, J. A., & Fuentes-López, J. D. (2020). Gross motor development in preschoolers on the islands of Lake Titicaca (3810 m.a.s.l.), Puno, Peru (Desarrollo motor grueso en preescolares de las islas del lago Titicaca (3810 m s. n. m.), Puno, Perú). Retos, 39(39), 592–597. https://doi.org/10.47197/retos.v0i39.79522
Ministerio de Educación de Perú. (2022). Decreto Supremo N° 014-2022-Minedu. El Peruano. https://www.gob.pe/institucion/minedu/normas-legales/3490243-014-2022-minedu-parte-1
Montoya, P. M. (2023). Desarrollo motor grueso y nivel socioeconomico en niños de dos instituciones de educacion primaria de Lima, Perú [Tesis de licenciatura, Universidad Nacional Mayor de San Marcos]. https://hdl.handle.net/20.500.12672/20405
Moon, J., Webster, C. A., Stodden, D. F., Brian, A., Mulvey, K. L., Beets, M., Egan, C. A., McIntosh, L. I. F., Merica, C. B., & Russ, L. (2024). Systematic review and meta-analysis of physical activity interventions to increase elementary children’s motor competence: a comprehensive school physical activity program perspective. BMC Public Health, 24(1), 826. https://doi.org/10.1186/s12889-024-18145-1
Nobre, G. C., Valentini, N. C., & Nobre, F. S. S. (2018). Fundamental motor skills, nutritional status, perceived competence, and school performance of Brazilian children in social vulnerability: Gender comparison. Child Abuse & Neglect, 80, 335–345. https://doi.org/10.1016/j.chiabu.2018.04.007
Organización Mundial de la Salud. (2014). Metas mundiales de nutrición 2025 Documento normativo sobre retraso del crecimiento. WHO, 9, 1–12.
Philpott, C., Donovan, B., Belton, S., Lester, D., Duncan, M., Chambers, F., & O’Brien, W. (2020). Investigating the Age-Related Association between Perceived Motor Competence and Actual Motor Competence in Adolescence. International Journal of Environmental Research and Public Health, 17(17), 6361. https://doi.org/10.3390/ijerph17176361
Reyes, E. (2023). Desarrollo motor grueso y estado nutricional en niños de educación primaria de una institución pública del distrito de San Martín de Porres, Lima [Tesis de licenciatura, Universidad Nacional Mayor de San Marcos]. https://cybertesis.unmsm.edu.pe/handle/20.500.12672/20780
Rodríguez-Briceño, D., Castro-Vilugrón, F., Diaz-Alvarado, M., & Carcamo-Oyarzun, J. (2022). La competencia motriz en estudiantes chilenos de 3° y 4° de educación básica. Aprendizajes esperados versus realidad. Retos, 45, 515–524. https://doi.org/10.47197/RETOS.V44I0.91095
Rommers, N., Rössler, R., Verhagen, E., Vandecasteele, F., Verstockt, S., Vaeyens, R., Lenoir, M., D’Hondt, E., & Witvrouw, E. (2020). A Machine Learning Approach to Assess Injury Risk in Elite Youth Football Players. Medicine & Science in Sports & Exercise, 52(8), 1745–1751. https://doi.org/10.1249/MSS.0000000000002305
Salami, S., Ribeiro, P. F., Rahymian, M., Shamsipour, P., Luz, L., de Lucena, C. M., Hardy, L. L., & Duncan, M. J. (2024). Associations between Biological Maturation, Chronological Age, Body Mass Index, Sex, and Motor Competence in Prepubertal Children: A Network Analysis. Children, 11(9), 1143. https://doi.org/10.3390/children11091143
Sánchez, A. (2023). Desarrollo motor grueso y desempeño escolar en niños de educación primaria de una institución particular del distrito de San Isidro, Lima [Tesis de licenciatura, Universidad Nacional Mayor de San Marcos]. https://cybertesis.unmsm.edu.pe/handle/20.500.12672/20404
Sania, A., Sudfeld, C. R., Danaei, G., Fink, G., McCoy, D. C., Zhu, Z., Fawzi, M. C. S., Akman, M., Arifeen, S. E., Barros, A. J. D., Bellinger, D., Black, M. M., Bogale, A., Braun, J. M., van den Broek, N., Carrara, V., Duazo, P., Duggan, C., Fernald, L. C. H., … Fawzi, W. (2019). Early life risk factors of motor, cognitive and language development: a pooled analysis of studies from low/middle-income countries. BMJ Open, 9(10), e026449. https://doi.org/10.1136/bmjopen-2018-026449
Schröer, C., Kruse, F., & Gómez, J. M. (2021). A Systematic Literature Review on Applying CRISP-DM Process Model. Procedia Computer Science, 181(2019), 526–534. https://doi.org/10.1016/j.procs.2021.01.199
Sharma, A., Cogley, A. C., & Tonon, S. S. (2000). The CRISP-DM Model: The New Blueprint for Data Mining. Journal of Data Warehousing, 5(4), 13–22. https://acortar.link/1HUYYE
Silva, J. C., Coelho, J., & Miguéis, V. L. (2024). Factors influencing the use of information and communication technologies by students for educational purposes. Education and Information Technologies, 29(8), 9313–9353. https://doi.org/10.1007/s10639-023-12132-6
Stodden, D. F., Langendorfer, S. J., Goodway, J. D., Roberton, M. A., Rudisill, M. E., Garcia, C., & Garcia, L. E. (2008). A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest, 60(2), 290–306. https://doi.org/10.1080/00336297.2008.10483582
Sutapa, Y. G., Puspita, I. D., Amir, A., Haetami, M., Sinulingga, A., Ngurah, I. G. P., Syam, A., Dewintha, R., & Wijaya, C. (2024). Does being physically active and engaged affect reading ability? A review of the literature. Retos, 61, 598–605. https://doi.org/10.47197/retos.v61.109559
Wirth, R., & Hipp, J. (2000). CRISP-DM: towards a standard process model for data mining. Proceedings of the Fourth International Conference on the Practical Application of Knowledge Discovery and Data Mining, 29-39. Proceedings of the Fourth International Conference on the Practical Application of Knowledge Discovery and Data Mining, 24959, 29–39. https://www.researchgate.net/publication/239585378_CRISP-DM_Towards_a_standard_process_model_for_data_mining
World Health Organization. (2023). Growth reference data for 5-19 years. WHO. https://www.who.int/tools/growth-reference-data-for-5to19-years/application-tools
Zhang, D., Chen, S., Xin, F., Drenowatz, C., Hu, X., & Tang, Y. (2024). Associations between fundamental movement skills and accelerometer-measured physical activity in Chinese children: the mediating role of cardiorespiratory fitness. PeerJ, 12(6), e17564. https://doi.org/10.7717/peerj.17564
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Angel Anibal Mamani-Ramos, Edgar Froilan Damian-Nuñez, Edgar Eloy Carpio-Vargas, Indalecio Mujica-Bermúdez, Carlos Manuel Pérez-Reátegui, Luis Martin Botton-Estrada, Jorge Alber Quisocala-Ramos, Henry Quispe-Cruz, Carlos Vidal Cutimbo-Quispe, Jhony Ruben Rodriguez-Mamani, Rosario Patricia Palomino-Crisóstomo, Willy Roger Cutipa-Salluca, Kandy Faviola Tuero-Chirinos, Naysha Sharon Villanueva-Alvaro, Jhonny Jesús Lava-Gálvez

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess