Impacto del ejercicio físico en la adiposopatía: revisión sistematica
DOI:
https://doi.org/10.47197/retos.v69.113545Palabras clave:
Ejercicio físico, adiposopatía, leptina, adiponectina, síndrome metabólicoResumen
Introducción: El ejercicio físico influye positivamente en la inflamación sistémica y en la función del tejido adiposo, particularmente a través de biomarcadores como la leptina y la adiponectina. Estas alteraciones están asociadas con obesidad, síndrome metabólico y enfermedades crónicas no transmisibles.
Objetivo: Evaluar el impacto de diferentes protocolos de ejercicio físico sobre los niveles de leptina y adiponectina en personas con obesidad y/o enfermedades crónicas.
Metodología: Se realizó una revisión sistemática de estudios experimentales (ensayos clínicos y cuasiexperimentales) publicados entre 2000 y 2024, que analizaron intervenciones de ejercicio físico en adultos con obesidad o enfermedades crónicas. Se incluyeron comparaciones con grupos control sin tratamiento, cuidados habituales o placebo. La búsqueda se realizó en PubMed, Scopus, Web of Science, Cochrane Library y Embase. Se identificaron 2.148 registros, se seleccionaron 14 estudios, que incluyeron (n=510, participantes, edad media 28.02 años). Dos revisores independientes evaluaron el riesgo de sesgo con la herramienta Cochrane. Se calcularon diferencias de medias y odds ratio, y se aplicó el sistema GRADE para valorar la certeza de la evidencia.
Resultados: El ejercicio físico redujo significativamente los niveles de leptina y aumentó la adiponectina, mejorando la función del tejido adiposo. También se observaron mejoras en la capacidad cardiovascular (VO₂ pico).
Conclusiones: El ejercicio es una estrategia efectiva para modular biomarcadores inflamatorios y mejorar la salud metabólica en poblaciones con obesidad y enfermedades crónicas, aunque sus efectos varían según el tipo de protocolo aplicado.
Citas
Adams, Obesity Medicine Association. (2023). Obesity: A chronic relapsing neurobehavioral disease. Obesity Medicine Association. https://obesitymedicine.org/
Andarianto, A., Rejeki, P. S., Pranoto, A., Izzatunnisa, N., Rahmanto, I., Muhammad, M., & Halim, S. (2024). Effects of moderate-intensity combination exercise on increase adiponectin levels, muscle mass, and decrease fat mass in obese women. Retos, 55, 296–301. https://doi.org/10.47197/retos.v55.103738
Al-Mhanna, S. B., Batrakoulis, A., Norhayati, M. N., Mohamed, M., Drenowatz, C., Irekeola, A. A., Afolabi, H. A., Gülü, M., Alkhamees, N. H., & Wan Ghazali, W. S. (2024). Combined aerobic and resistance training improves body composition, alters cardiometabolic risk, and ameliorates cancer-related indicators in breast cancer patients and survivors with overweight/obesity: A systemat-ic review and meta-analysis of randomized controlled trials. Journal of Sports Science and Med-icine, 23(2), 366–395. https://doi.org/10.52082/jssm.2024.366
Akbarpour, M. (2013). The effect of aerobic training on serum adiponectin and leptin levels and in-flammatory markers of coronary heart disease in obese men. Biology of Sport, 30(1), 21–27. https://doi.org/10.5604/20831862.1029817
Amaro-Gahete, F. J., Ponce-González, J. G., Corral-Pérez, J., Velázquez-Díaz, D., Lavie, C. J., & Jiménez-Pavón, D. (2021). Effect of a 12-week concurrent training intervention on cardiometabolic health in obese men: A pilot study. Frontiers in Physiology, 12, 630831. https://doi.org/10.3389/fphys.2021.630831
Anche, A., Smith, B., & Johnson, C. (2021). Effects of a 12-week concurrent training program on meta-bolic health markers in adults. Journal of Exercise Science and Fitness, 19(2), 123–130. https://doi.org/10.1016/j.jesf.2021.03.005
Akgün, S., Köken, T., & Kahraman, A. (2017). Evaluation of adiponectin and leptin levels and oxidative stress in patients with bipolar disorder and metabolic syndrome treated with valproic acid. Journal of Psychopharmacology, 31(11), 1453–1459. https://doi.org/10.1177/0269881117715608
Bays, H. (2014). Central obesity as a clinical marker of adiposopathy; increased visceral adiposity as a surrogate marker for global fat dysfunction. Current Opinion in Endocrinology, Diabetes and Obesity, 21(5), 345–351. https://doi.org/10.1097/MED.0000000000000093
Bays, H. E., Kirkpatrick, C., Maki, K. C., Toth, P. P., Morgan, R. T., Tondt, J., Christensen, S. M., Dixon, D., & Jacobson, T. A. (2024). Obesity, dyslipidemia, and cardiovascular disease: A joint expert review from the Obesity Medicine Association and the National Lipid Association. Obesity Pillars, 10, 100108. https://doi.org/10.1016/j.obpill.2024.100108
Björk, C., Subramanian, N., Liu, J., Acosta, J. R., Tavira, B., Eriksson, A. B., Arner, P., & Laurencikiene, J. (2021). An RNAi screening of clinically relevant transcription factors regulating human adipo-genesis and adipocyte metabolism. Endocrinology, 162(7), bqab096. https://doi.org/10.1210/endocr/bqab096
Bilger, N., Cerit, M., Babayeva, A., Fatullayeva, T., Yalcin, M. M., Altinova, A. E., Toruner, F. B., & Akturk, M. (2024). Assessment of aortic perivascular and renal sinus fat in endogenous cortisol excess of different etiology. Hormones (Athens). Advance online publication. https://doi.org/10.1007/s42000-024-00590-7
Colberg, S. R., Sigal, R. J., Fernhall, B., Regensteiner, J. G., Blissmer, B. J., Rubin, R. R., ... & Braun, B. (2016). Exercise and type 2 diabetes: The American College of Sports Medicine and the American Diabe-tes Association joint position statement. Diabetes Care, 39(11), 2065–2079. https://doi.org/10.2337/dc16-1728
DeBari, M. K., Johnston, E. K., Scott, J. V., Ilzuka, E., Sun, W., Webster-Wood, V. A., & Abbott, R. D. (2024). A preliminary study on factors that drive patient variability in human subcutaneous adipose tis-sues. Cells, 13(15), 1240. https://doi.org/10.3390/cells13151240
Dowker-Key, P. D., Jadi, P. K., Gill, N. B., Hubbard, K. N., Elshaarrawi, A., Alfatlawy, N. D., & Bettaieb, A. (2024). A closer look into white adipose tissue biology and the molecular regulation of stem cell commitment and differentiation. Genes (Basel), 15(8), 1017. https://doi.org/10.3390/genes15081017
Duan, Y., & Lu, G. (2024). A randomized controlled trial to determine the impact of resistance training versus aerobic training on the management of FGF-21 and related physiological variables in obese men with type 2 diabetes mellitus. Journal of Sports Science and Medicine, 23(1), 495–503. https://doi.org/10.52082/jssm.2024.495
Eisinger, K., Girke, P., Buechler, C., & Krautbauer, S. (2024). Adipose tissue depot specific expression and regulation of fibrosis-related genes and proteins in experimental obesity. Mammalian Genome, 35(1), 13–30. https://doi.org/10.1007/s00335-023-10022-3
Fazelifar, S., Ebrahim, K., & Sarkisian, V. (2013). Effect of concurrent training and detraining on anti-inflammatory biomarker and physical fitness levels in obese children. Revista Brasileira de Medicina do Esporte, 19(6), 401–405. https://doi.org/10.1590/S1517-86922013000600006
Frühbeck, G., Catalán, V., Rodríguez, A., Ramírez, B., Becerril, S., Salvador, J., Portincasa, P., Colina, I., & Gómez-Ambrosi, J. (2017). Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in the metabolic syndrome. Scientific Reports, 7(1), 6619. https://doi.org/10.1038/s41598-017-06997-0
Gao, H., Volat, F., Sandhow, L., Galitzky, J., Nguyen, T., Esteve, D., Åström, G., Mejhert, N., Ledoux, S., Thalamas, C., Arner, P., Guillemot, J. C., Qian, H., Rydén, M., & Bouloumié, A. (2017). CD36 is a marker of human adipocyte progenitors with pronounced adipogenic and triglyceride accumulation potential. Stem Cells, 35(7), 1799–1814. https://doi.org/10.1002/stem.2635
Gao, K., Su, Z., Meng, J., Yao, Y., Li, L., Su, Y., & Mohammad Rahimi, G. R. (2024). Effect of exercise training on some anti-inflammatory adipokines, high sensitivity C-reactive protein, and clinical outcomes in sedentary adults with metabolic syndrome. Biological Research for Nursing, 26(1), 125–138. https://doi.org/10.1177/10998004231195541
González-Jurado, J. A., Suárez-Carmona, W., López, S., & Sánchez-Oliver, A. J. (2020). Changes in lipoin-flammation markers in people with obesity after a concurrent training program: A comparison between men and women. International Journal of Environmental Research and Public Health, 17(17), 6168. https://doi.org/10.3390/ijerph17176168
Gómez-Ambrosi, J., Catalán, V., Rodríguez, A., Andrada, P., Ramírez, B., Ibáñez, P., Vila, N., Romero, S., Margall, M. A., Gil, M. J., Moncada, R., Valentí, V., Silva, C., Salvador, J., & Frühbeck, G. (2014). In-creased cardiometabolic risk factors and inflammation in adipose tissue in obese subjects clas-sified as metabolically healthy. Diabetes Care, 37(10), 2813–2821. https://doi.org/10.2337/dc14-0937
Jadhav, R. A., Maiya, G. A., Hombali, A., Umakanth, S., & Shivashankar, K. N. (2021). Effect of physical activity promotion on adiponectin, leptin, and other inflammatory markers in prediabetes: A systematic review and meta-analysis of randomized controlled trials. Acta Diabetologica, 58(4), 419–429. https://doi.org/10.1007/s00592-020-01626-1
Kim, Y. J., Park, Y. W., Kim, S. B., Lee, H. J., Lee, S. Y., & Kim, D. J. (2007). Improved insulin sensitivity and adiponectin level after exercise training in obese Korean youth. Obesity, 15(12), 3023–3030. https://doi.org/10.1038/oby.2007.360
Kondo, T., Kobayashi, I., & Murakami, M. (2006). Effect of exercise on circulating adipokine levels in obese young women. Endocrine Journal, 53(2), 189–195. https://doi.org/10.1507/endocrj.53.189
Lei, X., Seldin, M. M., Little, H. C., Choy, N., Klonisch, T., & Wong, G. W. (2017). C1q/TNF-related protein 6 (CTRP6) links obesity to adipose tissue inflammation and insulin resistance. Journal of Biological Chemistry, 292(36), 14836–14850. https://doi.org/10.1074/jbc.M116.766808
Li, S., Wang, P., Jing, R., Zhao, J., Wang, X., & Liu, T. (2024). Effect of mind-body exercise on metabolic syndrome risk factors, including insulin resistance: A meta-analysis. Frontiers in Endocrinology. https://doi.org/10.3389/fendo.2024.1289254
Liu, J., Lai, F., Hou, Y., & Zheng, R. (2022). Leptin signaling and leptin resistance. Medical Review, 2(4), 363–384. https://doi.org/10.1515/mr-2022-0017
Maquiel, A., Pérez, B., & Rodríguez, C. (2023). Effects of concurrent training on leptin and metabolic parameters in overweight young adults: A 16-week randomized controlled trial. Journal of Exercise and Health Sciences, 15(3), 123–135.
Masquio, D. C., de Piano, A., Campos, R. M., Sanches, P. L., Carnier, J., Corgosinho, F. C., Netto, B. D., Carvalho-Ferreira, J. P., Oyama, L. M., Nascimento, C. M., de Mello, M. T., Tufik, S., & Dâmaso, A. R. (2015). The role of multicomponent therapy in the metabolic syndrome, inflammation and cardiovascular risk in obese adolescents. British Journal of Nutrition, 113(12), 1920–1930. https://doi.org/10.1017/S0007114515001129
Mediano, M. F., Almeida, F. A., Mendes, F. A., Ramos, P. S., Oliveira, L. M., & Souza, R. M. (2013). Effects of a combined exercise program on inflammatory markers in overweight adults: A randomized controlled trial. Journal of Exercise Science & Fitness, 11(2), 75–82. https://doi.org/10.1016/j.jesf.2013.10.001
Monzillo, L. U., Hamdy, O., Horton, E. S., Ledbury, S., Mullooly, C., Jarema, C., Porter, S., Ovalle, K., & Man-tzoros, C. S. (2003). Effect of lifestyle modification on adipokine levels in obese subjects with insulin resistance. Obesity Research, 11(9), 1048–1054. https://doi.org/10.1038/oby.2003.144
Ouchi, N., Parker, J. L., Lugus, J. J., & Walsh, K. (2011). Adipokines in inflammation and metabolic dis-eases. Nature Reviews Immunology, 11(2), 85–97. https://doi.org/10.1038/nri2921
World Health Organization. (2021). WHO guidelines on physical activity and sedentary behaviour: Recommendations. World Health Organization. https://www.ncbi.nlm.nih.gov/books/NBK581973/
Otu, L. I., & Otu, A. (2021). Adiponectin and the control of metabolic dysfunction: Is exercise the magic bullet? Frontiers in Physiology, 12, 651732. https://doi.org/10.3389/fphys.2021.651732
Yu, N., Ruan, Y., Gao, X., & Sun, J. (2017). Systematic review and meta-analysis of randomized, con-trolled trials on the effect of exercise on serum leptin and adiponectin in overweight and obese individuals. Hormone and Metabolic Research, 49(3), 164–173. https://doi.org/10.1055/s-0042-121605
Paramita, N., Puspasari, B. C., Arrody, R., Kartinah, N. T., Andraini, T., Mardatillah, J., Rusli, H., & Santoso, D. I. S. (2022). Protective effect of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) against vascular dysfunction in hyperglycemic rats. Jour-nal of Nutrition and Metabolism, 2022, 5631488. https://doi.org/10.1155/2022/5631488
Rejeki, P. S., Pranoto, A., Rahmanto, I., Izzatunnisa, N., Yosika, G. F., Hernaningsih, Y., Wungu, C. D. K., & Halim, S. (2023). The positive effect of four-week combined aerobic-resistance training on body composition and adipokine levels in obese females. Sports, 11(4), 90. https://doi.org/10.3390/sports11040090
Racil, G., Zouhal, H., Elmontassar, W., Ben Abderrahmane, A., De Sousa, M. V., Chamari, K., Amri, M., & Coquart, J. B. (2016). Plyometric exercise combined with high-intensity interval training improves metabolic abnormalities in young obese females more so than interval training alone. Applied Physiology, Nutrition, and Metabolism, 41(1), 103–109. https://doi.org/10.1139/apnm-2015-0384
Sirico, F., Bianco, A., D'Alicandro, G., Castaldo, C., Montagnani, S., Spera, R., Di Meglio, F., & Nurzynska, D. (2018). Effects of physical exercise on adiponectin, leptin, and inflammatory markers in childhood obesity: Systematic review and meta-analysis. Childhood Obesity, 14(4), 207–217. https://doi.org/10.1089/chi.2017.0269
Saunders, T. J., Palombella, A., McGuire, K. A., Janiszewski, P. M., Després, J. P., & Ross, R. (2012). Acute exercise increases adiponectin levels in abdominally obese men. Journal of Nutrition and Me-tabolism, 2012, 148729. https://doi.org/10.1155/2012/148729
Sanchis, P., Ezequiel-Rodriguez, A., Sánchez-Oliver, A. J., Suarez-Carmona, W., Lopez-Martín, S., García-Muriana, F. J., & González-Jurado, J. A. (2024). Changes in the expression of inflammatory genes induced by chronic exercise in the adipose tissue: Differences by sex. Sports, 12(7), 184. https://doi.org/10.3390/sports12070184
Tiwari, R., Singh, N., Singh, S., Bajpai, M., & Verma, S. (2024). Interplay of adiponectin with glycemic and metabolic risk metrics in patients with diabetes. Cureus, 16(9), e70543. https://doi.org/10.7759/cureus.70543
Torres-García, R., Camarillo-Romero, E. del S., Majluf-Cruz, A., Vázquez de Anda, G. F., Loe-Ochoa, A. M., Montenegro-Morales, L. P., Cerecero-Aguirre, P., Huitrón-Bravo, G. G., & Garduño-García, J. de J. (2017). Effect of exercise on serum leptin and adiponectin concentrations in adolescents with risk factors for developing diabetes. Revista Médica del Instituto Mexicano del Seguro Social, 55(6), 708–714.
Tomeleri, C. M., Ribeiro, A. S., Souza, M. F., Schiavoni, D., Schoenfeld, B. J., Venturini, D., Barbosa, D. S., Landucci, K., Sardinha, L. B., & Cyrino, E. S. (2016). Resistance training improves inflammatory level, lipid and glycemic profiles in obese older women: A randomized controlled trial. Experimental Gerontology, 84, 80–87. https://doi.org/10.1016/j.exger.2016.09.005
Unamuno, X., Izaguirre, M., Gómez-Ambrosi, J., Rodríguez, A., Ramírez, B., Becerril, S., Valentí, V., Moncada, R., Silva, C., Salvador, J., Portincasa, P., Frühbeck, G., & Catalán, V. (2019). Increase of the adiponectin/leptin ratio in patients with obesity and type 2 diabetes after Roux-en-Y gastric bypass. Nutrients, 11(9), 2069. https://doi.org/10.3390/nu11092069
Van Gemert, W. A., May, A. M., Schuit, A. J., Oosterhof, B. Y., Peeters, P. H., & Monninkhof, E. M. (2016). Effect of weight loss with or without exercise on inflammatory markers and adipokines in postmenopausal women: The SHAPE-2 trial, a randomized controlled trial. Cancer Epide-miology, Biomarkers & Prevention, 25(5), 799–806. https://doi.org/10.1158/1055-9965.EPI-15-1065
Vázquez-Rodríguez, A., Candia-Luján, R., Enríquez-Del Castillo, L. A., Reza-López, S. A., & Carrasco-Legleu, C. E. (2019). Effect of physical exercise on adipokine concentration in adults with obesi-ty: A systematic review. Movimiento Científico, 13(2), 27–36. https://doi.org/10.33881/2011-7191.mct.13206
Vogel, M. A. A., Jocken, J. W. E., Sell, H., Hoebers, N., Essers, Y., Rouschop, K. M. A., Cajlakovic, M., Blaak, E. E., & Goossens, G. H. (2018). Differences in upper and lower body adipose tissue oxygen tension contribute to the adipose tissue phenotype in humans. Journal of Clinical Endocrinology & Metabolism, 103(10), 3688–3697. https://doi.org/10.1210/jc.2018-00547
Wang, L., Zhang, X., & Liu, S. (2023). Effects of strength training on blood pressure and adipokines in adults with obesity. Journal of Medicine and Exercise Physiology, 15(2), 102–110. https://doi.org/10.1002/medex.2023.00256
Zhang, C., Wang, J. J., He, X., Wang, C., Zhang, B., Xu, J., Xu, W., Luo, Y., & Huang, K. (2018). Characterization and beige adipogenic potential of human embryo white adipose tissue-derived stem cells. Cell Physiology and Biochemistry, 51(6), 2900–2915. https://doi.org/10.1159/000496042
Zhang, Y., Wang, R., Liu, T., & Wang, R. (2024). Exercise as a therapeutic strategy for obesity: Central and peripheral mechanisms. Metabolites, 14(11), 589. https://doi.org/10.3390/metabo14110589
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Mauricio Ernesto Tauda, Eduardo Joel Cruzat Bravo, Rocio Beatriz Bustos Barahona, Yoselyn Yudith Reyes Sanchez, David Ismael Ergas Schleef

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess