Efecto de las variaciones diurnas en el rendimiento cognitivo y físico de las atletas femeninas
DOI:
https://doi.org/10.47197/retos.v68.113742Palabras clave:
Cronobiología, rendimiento cognitivo, variaciones diurnas, atletas femeninas, rendimiento físicoResumen
Objetivo: El ritmo circadiano humano es un parámetro fundamental para comprender su estado biológico, fisiológico y psicológico actual, lo que influye ampliamente en la condición física. Los mecanismos fisiológicos subyacentes a los ritmos circadianos siguen estando poco explorados, a pesar de su posible impacto en la salud física y mental. Este estudio tiene como objetivo examinar el efecto de diferentes momentos del día en el rendimiento cognitivo y físico de atletas femeninas. Metodología: Se empleó un diseño de medidas repetidas contrabalanceado dentro de los sujetos, involucrando a 15 estudiantes universitarias sanas de entre 18 y 25 años. Cada participante realizó pruebas de rendimiento cognitivo y físico en tres momentos distintos del día—6 AM, 12 PM y 6 PM—en días separados.
Resultados: El estudio mostró un efecto significativo de las variaciones diurnas en los índices de rendimiento cognitivo y físico.
Discusión: El rendimiento cognitivo presentó patrones variables a lo largo del día. El razonamiento perceptivo, medido por la prueba de Müller-Lyer, alcanzó su punto máximo en la mañana y fue más bajo en la noche. La memoria de trabajo, evaluada mediante la prueba de amplitud de dígitos, mostró valores moderados al mediodía y en la noche. La fuerza, medida por el salto vertical, fue mayor en la noche y menor en la mañana. La agilidad, evaluada con la prueba de agilidad de Illinois, alcanzó su punto máximo al mediodía y registró los valores más bajos en la mañana.
Conclusiones: La hora del día afecta significativamente el rendimiento cognitivo y físico en atletas femeninas. La fuerza alcanza su punto máximo en la noche, la agilidad al mediodía y el razonamiento perceptivo en la mañana, mientras que la memoria de trabajo muestra un rendimiento moderado al mediodía y en la noche. Estos resultados sugieren que los atletas y entrenadores pueden optimizar los horarios de entrenamiento y competición en función de las variaciones diurnas del rendimiento cognitivo y físico.
Referencias
Ayala, V., Martínez-Bebia, M., Latorre, J., Gimenez-Blasi, N., Jimenez-Casquet, M., Conde-Pipó, J., Bach- Faig, A., & Mariscal-Arcas, M. (2021). Influence of circadian rhythms on sports performance. Chronobiology International, 38, 1522- 1536.
https://doi.org/10.1080/07420528.2021.1933003.
Bafna, A., Banks, G., Hastings, M., & Nolan, P. (2023). Dynamic modulation of genomic enhancer elements in the suprachiasmatic nucleus, the site of the mammalian circadian clock. Genome Research, 33, 673 - 688. https://doi.org/10.1101/gr.277581.122.
Belkhir, Y., Rekik, G., Chtourou, H., & Souissi, N. (2019). Listening to neutral or self-selected motivational music during warm-up to improve short-term maximal performance in soccer players: Effect of time of day. Physiology & Behavior, 204, 168-173.
https://doi.org/10.1016/j.physbeh.2019.02.033
Bianchi, L., Cavarzan, F., Ciampitti, L., Cremonesi, M., Grilli, F., & Saccomandi, P. (2022). Thermophysical and mechanical properties of biological tissues as a function of temperature: a systematic literature review. International Journal of Hyperthermia, 39, 297 - 340. https://doi.org/10.1080/02656736.2022.2028908.
Blatter, K., Cajochen, C. J. P., & Behavior, C. (2007). Circadian rhythms in cognitive performance: Methodological constraints, protocols, theoretical underpinnings. Physiology & Behavior, 90(2- 3), 196-208. https://doi.org/10.1016/j.physbeh.2006.09.007
Brandl, A., Wilke, J., Egner, C., Schmidt, T., & Schleip, R. (2023). Effects of Maximal Eccentric Trunk Extensor Exercise on Lumbar Extramuscular Connective Tissue: A Matched-Pairs Ultrasound Study.. Journal of sports science & medicine, 22 3, 447-454 . https://doi.org/10.52082/jssm.2023.446.
Castelli, J., Raposo, H., Navarro, C., Lazaro, C., Sartori, M., Costa, A., Nogueira, P., Velloso, L., Vercesi, A., & Oliveira, H. (2025). CETP expression in females increases body metabolism under both cold exposure and thermoneutrality contributing to a leaner phenotype.. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 39 3, e70389 . https://doi.org/10.1096/fj.202402843RR.
Chtourou, H., Hammouda, O., Souissi, H., Chamari, K., Chaouachi, A., & Souissi, N. (2012). Diurnal Variations in Physical Performances Related to Football in Young Soccer Players. Asian Journal of Sports Medicine, 3(3). https://doi.org/10.5812/asjsm.34604
Coiffard, B., Diallo, A., Mezouar, S., Leone, M., & Mege, J. (2021). A Tangled Threesome: Circadian Rhythm, Body Temperature Variations, and the Immune System. Biology, 10. https://doi.org/10.3390/biology10010065.
Cox, R., Wright, K., Axelsson, J., & Balter, L. (2024). Diurnal variation in anxiety and activity is influenced by chronotype and probable anxiety-related disorder status. Psychiatry Research, 338. https://doi.org/10.1016/j.psychres.2024.116006.
Czaja, S., Harvey, P., & Kallestrup, P. (2020). A Novel Method for Assessing and Training Everyday Functional Skills. Innovation in Aging, 4, 467- 467.
https://doi.org/10.1093/geroni/igaa057.1513.
Edwards, B., Waterhouse, J., & Reilly, T. J. C. I. (2007). The effects of circadian rhythmicity and time- awake on a simple motor task. Chronobiology International, 24(6), 1109-1124.
https://doi.org/10.1111/j.1365-2869.2007.00582.x
Ehrhardt, M., Schreiber, S., Duderstadt, Y., Braun-Dullaeus, R., Borucki, K., Brigadski, T., Müller, N., Lessmann, V., & Müller, P. (2024). Circadian rhythm of brain‐derived neurotrophic factor in serum and plasma. Experimental Physiology, 109, 1755- 1767.
https://doi.org/10.1113/EP091671.
Etnier, J. L., Salazar, W., Landers, D. M., Petruzzello, S. J., Han, M., & Nowell, P. (1997). The Influence of Physical Fitness and Exercise upon Cognitive Functioning: A Meta-Analysis. Journal of Sport and Exercise Psychology, 19(3), 249–277. https://doi.org/10.1123/jsep.19.3.249
Farahani, F., Karwowski, W., D’Esposito, M., Betzel, R., Douglas, P., Sobczak, A., Bohaterewicz, B., Marek, T., & Fąfrowicz, M. (2021). Diurnal variations of resting-state fMRI data: A graph-based analysis. NeuroImage, 256, 119246- 119246.
https://doi.org/10.1016/j.neuroimage.2022.119246.
Geva, S., Truneh, T., Seghier, M. L., Hope, T. M. H., Leff, A. P., Crinion, J. T., Gajardo-Vidal, A., Lorca-Puls, D. L., Green, D. W., & Price, C. J. (2021). Lesions that do or do not impair digit span: a study of 816 stroke survivors. Brain Communications, 3(2). https://doi.org/10.1093/braincomms/fcab031
Goltsev, A., Wright, E., Mendes, J., & Yoon, S. (2022). Generation and Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus: A Core-Shell Model. Journal of Biological Rhythms, 37, 545 - 561. https://doi.org/10.1177/07487304221107834.
Grosjean, E., Simonneaux, V., & Challet, E. (2023). Reciprocal Interactions between Circadian Clocks, Food Intake, and Energy Metabolism. Biology, 12. https://doi.org/10.3390/biology12040539.
Harvey, J., Plante, A., & Meredith, A. (2020). Ion Channels Controlling Circadian Rhythms in Suprachiasmatic Nucleus Excitability.. Physiological reviews. https://doi.org/10.1152/physrev.00027.2019.
Harvey, P., Forero, D., Ahern, L., Tiberica, L., Kallestrup, P., & Czaja, S. (2020). The Computerized Functional Skills Assessment and Training Program: Sensitivity to Global Cognitive Impairment, Correlations With Cognitive Abilities, and Factor Structure.. The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry. https://doi.org/10.1016/j.jagp.2020.08.019.
Hastings, M., Smyllie, N., & Patton, A. (2020). Molecular-Genetic Manipulation of the Suprachiasmatic Nucleus Circadian Clock.. Journal of molecular biology. https://doi.org/10.1016/j.jmb.2020.01.019.
Helm, E. E., Matt, K. S., DeAngelis, T. R., & Rehberg, B. (2017). The influence of high-intensity exercise and the Val66Met polymorphism on circulating BDNF and locomotor learning. Neuropsychologia, 144, 77-85. https://doi.org/10.1016/j.neuropsychologia.2017.09.026
Hendy, A. M., Andrushko, J. W., Della Gatta, P. A., & Teo, W.-P. (2022). Acute Effects of High-Intensity Aerobic Exercise on Motor Cortical Excitability and Inhibition in Sedentary Adults. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.814633
Hesketh, S., & Esser, K. (2024). The Clockwork of Champions: Influence of Circadian Biology on Exercise Performance.. Free radical biology & medicine. https://doi.org/10.1016/j.freeradbiomed.2024.08.020.
Holleman, J., Adagunodo, S., Kåreholt, I., Hagman, G., Aspö, M., Udeh-Momoh, C., Solomon, A., Kivipelto, M., & Sindi, S. (2022). Cortisol, cognition and Alzheimer’s disease biomarkers among memory clinic patients. BMJ Neurology Open, 4. https://doi.org/10.1136/bmjno-2022-000344.
Huang, J. (2022). Identification of Sports Athletes Psychological Stress Based on K-Means Optimized Hierarchical Clustering. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/6555797.
Huang, T., Larsen, K. T., Ried-Larsen, M., Moller, N. C., & Andersen, L. B. (2014). The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. Scandinavian Journal of Medicine & Science in Sports, 24(1), 1-10. https://doi.org/10.1111/sms.12069
Jones, J., Chaturvedi, S., Granados-Fuentes, D., & Herzog, E. (2021). Circadian neurons in the paraventricular nucleus entrain and sustain daily rhythms in glucocorticoids. Nature Communications, 12. https://doi.org/10.1038/s41467-021-25959-9.
Joyce, B., Chen, X., Yaffe, K., Henkle, B., Gao, T., Zheng, Y., Kalhan, R., Washko, G., Kunisaki, K., Thyagarajan, B., Gross, M., Jacobs, D., Lloyd‐Jones, D., Liu, K., Sidney, S., & Hou, L. (2022). Pulmonary Function in Midlife as a Predictor of Later-Life Cognition: The Coronary Artery Risk Development in Adults (CARDIA) Study.. The journals of gerontology. Series A, Biological sciences and medical sciences. https://doi.org/10.1093/gerona/glac026.
Kalén, A., Bisagno, E., Musculus, L., Raab, M., Pérez-Ferreirós, A., Williams, A. M., Araújo, D., Lindwall, M., & Ivarsson, A. (2021). The role of domain-specific and domain-general cognitive functions and skills in sports performance: A meta-analysis. Psychological Bulletin, 147(12), 1290–1308. https://doi.org/10.1037/bul0000355
Kaneko, H., Kaitsuka, T., & Tomizawa, K. (2020). Response to Stimulations Inducing Circadian Rhythm in Human Induced Pluripotent Stem Cells. Cells, 9. https://doi.org/10.3390/cells9030620.
Kim, Y., & Lazar, M. (2020). Transcriptional Control of Circadian Rhythms and Metabolism: A Matter of Time and Space.. Endocrine reviews. https://doi.org/10.1210/endrev/bnaa014.
Klingner, F., Huijgen, B., & Kempe, M. (2023). The heat is on: Investigating the effect of psychological pressure on competitive performance in elite surfing. Journal of Sports Sciences, 41, 596 - 604. https://doi.org/10.1080/02640414.2023.2230032.
Kons, R., Santos, G., Borges, M., De Sousa, P., & Detanico, D. (2025). Time-of-day effects on physical performance and perceptual responses in Brazilian Jiu-Jitsu athletes.. Chronobiology international, 1-8 . https://doi.org/10.1080/07420528.2025.2453235.
Koronowski, K., & Sassone-Corsi, P. (2021). Communicating clocks shape circadian homeostasis. Science,
371. https://doi.org/10.1126/science.abd0951.
Ksinan, A., Dalecka, A., Court, T., Pikhart, H., & Bobák, M. (2024). Pulmonary function and trajectories of cognitive decline in aging population. Experimental Gerontology, 189.
https://doi.org/10.1016/j.exger.2024.112386.
Kuo, H.-I., Hsieh, M.-H., Lin, Y.-T., Kuo, M.-F., & Nitsche, M. A. (2023). A single bout of aerobic exercise modulates motor learning performance and cortical excitability in humans. International Journal of Clinical and Health Psychology, 23(1), 100333. https://doi.org/10.1016/j.ijchp.2022.100333
Lack, L., Bailey, M., Lovato, N., & Wright, H. (2009). Chronotype differences in circadian rhythms of temperature, melatonin, and sleepiness as measured in a modified constant routine protocol. Nature and Science of Sleep, 1, 1–8.
Lai, X., Sun, J., He, B., Li, D., Wang, S., & Zhan, S. (2022). Associations between pulmonary function and cognitive decline in the middle-aged and older adults: evidence from the China Health and Retirement Longitudinal Study. Environmental Health and Preventive Medicine, 27.
https://doi.org/10.1265/ehpm.22-00158.
Lok, R., Zerbini, G., Gordijn, M., Beersma, D., & Hut, R. (2020). Gold, silver or bronze: circadian variation strongly affects performance in Olympic athletes. Scientific Reports, 10.
https://doi.org/10.1038/s41598-020-72573-8.
Low, W., Freeman, P., Butt, J., Stoker, M., & Maynard, I. (2022). The role and creation of pressure in training: Perspectives of athletes and sport psychologists. Journal of Applied Sport Psychology, 35, 710 - 730. https://doi.org/10.1080/10413200.2022.2061637.
Martin-Lopez, J., Pérez-López, A., Varillas-Delgado, D., & López-Samanés, Á. (2025). Influence of time-of- day on neuromuscular performance in team sport athletes: a systematic review and meta- analysis. Frontiers in Sports and Active Living, 6. https://doi.org/10.3389/fspor.2024.1466050.
May, C. P., Hasher, L., & Stoltzfus, E. R. (1993). Optimal time of day and the magnitude of age differences in memory. Psychological Science, 4(5), 326-330. https://doi.org/10.1111/j.1467- 9280.1993.tb00573.x
Mazuski, C., Chen, S., & Herzog, E. (2020). Different Roles for VIP Neurons in the Neonatal and Adult Suprachiasmatic Nucleus. Journal of Biological Rhythms, 35, 465- 475. https://doi.org/10.1177/0748730420932073.
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological review, 63(2), 8
Mirizio, G., Nunes, R., Vargas, D., Foster, C., & Vieira, E. (2020). Time-of-Day Effects on Short-Duration Maximal Exercise Performance. Scientific Reports, 10. https://doi.org/10.1038/s41598-020- 66342-w.
Montaruli, A., Castelli, L., Mulè, A., Scurati, R., Esposito, F., Galasso, L., & Roveda, E. (2021). Biological Rhythm and Chronotype: New Perspectives in Health. Biomolecules, 11. https://doi.org/10.3390/biom11040487.
Müller-Lyer, F. C. (1889). Optical Illusions. Archiv für Physiologie, Supplement, 263–270.
Müller, S., Abernethy, B., & Farrow, D. (2006). How do world-class cricket batsmen anticipate a bowler's intention? Cognitive Neuropsychology, 59(12), 2162-2186.
https://doi.org/10.1080/02643290600576595
Neves, A., Albuquerque, T., Quintela, T., & Costa, D. (2022). Circadian rhythm and disease: Relationship, new insights, and future perspectives. Journal of Cellular Physiology, 237, 3239 - 3256. https://doi.org/10.1002/jcp.30815.
Nicolaisen, T., Klein, A., Dmytriyeva, O., Lund, J., Ingerslev, L., Fritzen, A., Carl, C., Lundsgaard, A., Frost, M., , T., Schjerling, P., Gerhart-Hines, Z., Flamant, F., Gauthier, K., Larsen, S., Richter, E., Kiens, B., & Clemmensen, C. (2020). Thyroid hormone receptor α in skeletal muscle is essential for T3‐ mediated increase in energy expenditure. The FASEB Journal, 34, 15480 - 15491. https://doi.org/10.1096/fj.202001258RR.
Nobari, H., Azarian, S., Saedmocheshi, S., Valdés-Badilla, P., & Calvo, T. (2023). Narrative review: The role of circadian rhythm on sports performance, hormonal regulation, immune system function, and injury prevention in athletes. Heliyon, 9. https://doi.org/10.1016/j.heliyon 2023.e19636.
Ong, N., & Chua, J. (2021). Effects of psychological interventions on competitive anxiety in sport: A meta- analysis. Psychology of Sport and Exercise. https://doi.org/10.1016/j.psychsport.2020.101836.
Orban, C., Kong, R., Li, J., Chee, M., & Yeo, B. (2020). Time of day is associated with paradoxical reductions in global signal fluctuation and functional connectivity. PLoS Biology. https://doi.org/10.1371/journal.pbio.3000602.
Pérez-Fabello, M. J., & Campos, A. (2022). The Müller-Lyer illusion through mental imagery. Current Psychology, 42(33), 29316–29324. https://doi.org/10.1007/s12144-022-03979-y
Pradhan, S., Parganiha, A., Agashe, C., & Pati, A. (2024). Circadian rhythm in sportspersons and athletic performance: A mini review. Chronobiology International, 41, 137 - 181. https://doi.org/10.1080/07420528.2024.2305663.
Racinais, S., & Oksa, J. (2010). Temperature and neuromuscular function. Scandinavian Journal of Medicine & Science in Sports, 20, 1-18. https://doi.org/10.1111/j.1600-0838.2010.01204.x
Rad, R., Hosseini, M., & Shirvani, H. (2020). Circadian rhythm effect on military physical fitness and field training: a narrative review. Sport Sciences for Health, 17, 43-56.
https://doi.org/10.1007/s11332-020-00692-w.
Refinetti, R. (2020). Circadian rhythmicity of body temperature and metabolism. Temperature, 7, 321 -
362. https://doi.org/10.1080/23328940.2020.1743605.
Reilly, T., Waterhouse, J., & Edwards, B. (2005). Jet lag and air travel: Implications for performance.
Clinics in Sports Medicine, 24, 367-380.
Salehinejad, M., Wischnewski, M., Ghanavati, E., Mosayebi-Samani, M., Kuo, M., & Nitsche, M. (2021). Cognitive functions and underlying parameters of human brain physiology are associated with chronotype. Nature Communications, 12. https://doi.org/10.1038/s41467-021-24885-0.
Schumacher, N., Zaar, C., Kovar, J., Lahmann-Lammert, L., & Wollesen, B. (2024). Relation of general‐ perceptual cognitive abilities and sport‐specific performance of young competitive soccer
players. European Journal of Sport Science, 24, 1270 - 1277.
https://doi.org/10.1002/ejsc.12171.
Shakor, A. (2021). Biological Rhythms: Their Functions, Effects, and Complements. Electronic Journal of Biology, 17. https://doi.org/10.36648/1860-3122.21.17.222.
Shang, X., Scott, D., Chan, R., Zhang, L., & He, M. (2021). Association of pulmonary function with cognitive decline in older adults: a nationwide longitudinal study in China.. The journals of gerontology. Series A, Biological sciences and medical sciences. https://doi.org/10.1093/gerona/glab096.
Sochal, M., Binienda, A., Tarasiuk, A., Gabryelska, A., Białasiewicz, P., Ditmer, M., Turkiewicz, S., Karuga, F., Fichna, J., & Wysokiński, A. (2024). The Relationship between Sleep Parameters Measured by Polysomnography and Selected Neurotrophic Factors. Journal of Clinical Medicine, 13.
https://doi.org/10.3390/jcm13030893.
Taillard, J., Sagaspe, P., Philip, P., & Bioulac, S. (2021). Sleep timing, chronotype and social jetlag: Impact on cognitive abilities and psychiatric disorders. Biochemical Pharmacology, 191, 114438. https://doi.org/10.1016/j.bcp.2021.114438
Teodoro, T., Koreki, A., Chen, J., Coebergh, J., Poole, N., Ferreira, J., Edwards, M., & Isaacs, J. (2022). Functional cognitive disorder affects reaction time, subjective mental effort and global metacognition.. Brain : a journal of neurology. https://doi.org/10.1093/brain/awac363.
Thun, E., Bjorvatn, B., Flo, E., Harris, A., & Pallesen, S. (2015). Sleep, circadian rhythms, and athletic performance. Sleep Medicine Reviews, 23, 1-9.
Trecroci, A., Duca, M., Cavaggioni, L., Rossi, A., Scurati, R., Longo, S., Merati, G., Alberti, G., & Formenti, D. (2021). Relationship between Cognitive Functions and Sport-Specific Physical Performance in Youth Volleyball Players. Brain Sciences, 11. https://doi.org/10.3390/brainsci11020227.
Vitosevic, B. (2017). The circadian clock and human athletic performance. The University Thought- Publication in Natural Sciences, 7(1), 1–7. https://doi.org/10.5937/univtho7-13650
Williams, A. M., et al. (2002). Anticipation skill in a real-world task: Measurement, training, and transfer in tennis. Journal of Experimental Psychology: Applied, 8(4), 259.
https://doi.org/10.1080/1359813022000023559
Xu, S., Akioma, M., & Yuan, Z. (2021). Relationship between circadian rhythm and brain cognitive functions. Frontiers of Optoelectronics, 14, 278 - 287. https://doi.org/10.1007/s12200-021- 1090-y.
Zhang, J., Zhu, P., Cai, Z., Xing, X., Wu, J., Zheng, M., Hua, X., Gong, B., & Xu, J. (2024). Sports promote brain evolution: a resting-state fMRI study of volleyball athlete. Frontiers in Sports and Active Living, 6. https://doi.org/10.3389/fspor.2024.1393988.
Zhang, Z., Zhai, Q., Gu, Y., Zhang, T., Huang, Z., Liu, Z., Liu, Y., & Xu, Y. (2020). Impaired function of the suprachiasmatic nucleus rescues the loss of body temperature homeostasis caused by time- restricted feeding. Science bulletin, 65 15, 1268-1280.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Gopal Chandra Saha; Bekir Erhan Orhan, Susmita Hazra, Subhashis Biswas, Prem Kumar Karak, Smriti Mondal, Shantanu Halder, Mahendra Pratap Gaur

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess