Efectos del entrenamiento en intervalos de alta intensidad en condiciones hipóxicas sobre el rendimiento del sistema energético en futbolistas universitarios

Autores/as

  • Dr. Jukdao Potisaen Department of Sports Science Program, Faculty of Education, Rajabhat Mahasarakham University, Maha Sarakham, Thailand https://orcid.org/0000-0001-6864-0192
  • Traimit Potisan Rajabhat Mahasarakham University (Thailand)
  • Supanithi Khumprommarach Rajabhat Mahasarakham University (Thailand)

DOI:

https://doi.org/10.47197/retos.v68.115923

Palabras clave:

Capacidad aeróbica, capacidad anaeróbica, preparación física en fútbol, entrenamiento en hipoxia, entrenamiento por intervalos

Resumen

Introducción: El HIIT es eficaz para mejorar el rendimiento deportivo, pero sus efectos bajo hipoxia simulada frente a condiciones normóxicas siguen siendo poco estudiados, especialmente en deportes intermitentes como el fútbol.

Objetivo: Evaluar si el HIIT en hipoxia simulada mejora más el rendimiento aeróbico y anaeróbico que el HIIT en normoxia y el entrenamiento convencional en futbolistas universitarios.

Metodología: Veinticuatro futbolistas universitarios fueron asignados aleatoriamente a tres grupos: HIIT en hipoxia, HIIT en normoxia y control. Durante cuatro semanas, los grupos experimentales realizaron HIIT específico al fútbol en condiciones asignadas, mientras todos continuaron con su entrenamiento regular. Se evaluaron VO₂max, Yo-Yo IR1, RAST y sprint de 30 metros antes y después de la intervención.

Resultados: El grupo HIIT en hipoxia mostró mejoras significativas en VO₂max y en la distancia del Yo-Yo IR1 (p < 0.01), así como mejoras moderadas en la potencia máxima del RAST. El rendimiento del sistema ATP-PC mostró pocos cambios. Estas mejoras fueron superiores a las de los otros grupos.

Discusión: La hipoxia simulada parece actuar como un estímulo adicional que favorece la adaptación aeróbica, en línea con estudios previos sobre la mejora del transporte de oxígeno y la función mitocondrial.

Conclusiones: El HIIT en hipoxia simulada mejora eficazmente la capacidad aeróbica y aspectos clave del rendimiento anaeróbico, siendo una estrategia de acondicionamiento eficiente para el fútbol competitivo.

Citas

Archacki, D., Zieliński, J., Pospieszna, B., Włodarczyk, M., & Kusy, K. (2024). The contribution of energy systems during 15-second sprint exercise in athletes of different sports specializa-tions. PeerJ, 12, e17863. https://doi.org/10.7717/peerj.17863

Berlian, G., Tandrasasmita, O. M., & Tjandrawinata, R. R. (2019). Upregulation of endogenous erythropoietin expression by DLBS6747, a bioactive fraction of Ipomoea batatas L. leaves, via increasing HIF1α transcription factor in HEK293 kidney cells. Journal of Ethnopharmacology, 235, 190-198. https://doi.org/10.1016/j.jep.2019.01.016

Bonilla, D. A., Pérez-Idárraga, A., Odriozola-Martínez, A., & Kreider, R. B. (2021). The 4r’s framework of nutritional strategies for post-exercise recovery: A review with emphasis on new gen-eration of carbohydrates. International journal of environmental research and public health, 18(1), 103. https://doi.org/10.3390/ijerph18010103

Brocherie, F., Girard, O., Faiss, R., & Millet, G. P. (2015). High-intensity intermittent training in hypoxia: a double-blinded, placebo-controlled field study in youth football players. The Journal of Strength & Conditioning Research, 29(1), 226-237. https://doi.org/10.1519/jsc.0000000000000590

Camacho-Cardenosa, M., Camacho-Cardenosa, A., Guardado, M., Marcos-Serrano, M., Timon, R., & Olci-na, G. (2016). A new dose of maximal-intensity interval training in hypoxia to improve body composition and hemoglobin and hematocrit levels: a pilot study. The Journal of Sports Medicine and Physical Fitness, 57(1-2), 60-69. https://doi.org/10.23736/s0022-4707.16.06549-x

Cardinale, D. A., Larsen, F. J., Lännerström, J., Manselin, T., Södergård, O., Mijwel, S., ... & Boushel, R. (2019). Influence of hyperoxic-supplemented high-intensity interval training on hemotological and muscle mitochondrial adaptations in trained cyclists. Frontiers in physiolo-gy, 10, 730. https://doi.org/10.3389/fphys.2019.00730.

Feito, Y., Heinrich, K. M., Butcher, S. J., & Poston, W. S. C. (2018). High-intensity functional training (HIFT): definition and research implications for improved fitness. Sports, 6(3), 76. https://doi.org/10.3390/sports6030076

Ferguson, R. A., Mitchell, E. A., Taylor, C. W., Bishop, D. J., & Christiansen, D. (2021). Blood‐flow‐restricted exercise: Strategies for enhancing muscle adaptation and performance in the endurance‐trained athlete. Experimental Physiology, 106(4), 837-860. https://doi.org/10.1113/ep089280

Girard, O., Brocherie, F., & Millet, G. (2017). Effects of Altitude/Hypoxia on Single- and Multiple-Sprint Performance: A Comprehensive Review. Sports Medicine, 47, 1931-1949. https://doi.org/10.1007/s40279-017-0733-z.

Guardado, I., Ureña, B., Cardenosa, A., Cardenosa, M., Camacho, G., & Andrada, R. (2020). Effects of strength training under hypoxic conditions on muscle performance, body composition and haematological variables. Biology of Sport, 37(2), 121-129. https://doi.org/10.5114/biolsport.2020.93037

Hagiwara, M., Yamagishi, T., Okamoto, S., Azuma, Y., & Yamashita, D. (2023). Short‐term repeated sprint training in hypoxia improves explosive power production capacity and repeated sprint ability in Japanese international‐level male fencers: A case study. Physiological Reports, 11(6), e15637. https://doi.org/10.14814/phy2.15637.

Hirota, K. (2020). Basic biology of hypoxic responses mediated by the transcription factor HIFs and its implication for medicine. Biomedicines, 8(2), 32. https://doi.org/10.3390/biomedicines8020032

Hostrup, M., & Bangsbo, J. (2023). Performance adaptations to intensified training in top-level football. Sports Medicine, 53(3), 577-594. https://doi.org/10.1007/s40279-022-01791-z

Ito, S. (2019). High-intensity interval training for health benefits and care of cardiac diseases-the key to an efficient exercise protocol. World journal of cardiology, 11(7), 171. https://doi.org/10.4330/wjc.v11.i7.171

Kavanagh R, McDaid K, Rhodes D, Connor M, Oliveira R, et al. (2023) The Relationship between VO2 max and 1200m Shuttle Run Performance in Elite Academy Football Players. Int J Sports Ex-erc Med 9:261. https://doi.org/10.23937/2469-5718/1510261.

Kim, S. W., Jung, W. S., Kim, J. W., Nam, S. S., & Park, H. Y. (2021). Aerobic continuous and interval train-ing under hypoxia enhances endurance exercise performance with hemodynamic and au-tonomic nervous system function in amateur male swimmers. International Journal of Environmental Research and Public Health, 18(8), 3944. https://doi.org/10.3390/ijerph18083944

Krammer, U. D., Sommer, A., Tschida, S., Mayer, A., Lilja, S. V., Switzeny, O. J., ... & Haslberger, A. G. (2022). PGC-1α methylation, miR-23a, and miR-30e expression as biomarkers for exer-cise-and diet- induced mitochondrial biogenesis in capillary blood from healthy Individuals: A single-arm intervention. Sports, 10(5), 73. https://doi.org/10.3390/sports10050073

Kusuma, I. D. M. A. W., Fahrudin, M. F., Pramono, B. A., Pranoto, A., Artanayasa, I. W., Satyawan, I. M., Kusuma, K. C. A., & Himawan, A. (2025). The effect of large-sided games with HIIT pro-tocol on the anaerobic ability of student futsal players. Retos, 64, 678–685. https://doi.org/10.47197/retos.v64.109 828

Lanfranchi, C., Willis, S. J., Laramée, L., Conde Alonso, S., Pialoux, V., Kayser, B., ... & Zanou, N. (2024). Repeated sprint training in hypoxia induces specific skeletal muscle adaptations through S100A protein signaling. The FASEB Journal, 38(8), e23615. https://doi.org/10.1096/fj.202302084RR

Maciejczyk, M., Palka, T., Wiecek, M., Szymura, J., Kusmierczyk, J., Bawelski, M., ... & Szygula, Z. (2023). Effects of intermittent hypoxic training on aerobic capacity and second ventilatory threshold in untrained men. Applied Sciences, 13(17), 9954. https://doi.org/10.3390/app13179954

Mahatme, S., Vaishali, K., Kumar, N., Rao, V., Kovela, R. K., & Sinha, M. K. (2022). Impact of high-intensity interval training on cardio-metabolic health outcomes and mitochondrial function in older adults: a review. Medicine and Pharmacy Reports, 95(2), 115.

https://doi.org/10.15386/mpr-2201

Mangano, G. D., Fouani, M., D’Amico, D., Di Felice, V., & Barone, R. (2022). Cancer-related cachexia: the vicious circle between inflammatory cytokines, skeletal muscle, lipid metabolism and the possible role of physical training. International journal of molecular sciences, 23(6), 3004. https://doi.org/10.3390/ijms23063004

Marques Neto, S. R., Castiglione, R. C., da Silva, T. C., Paes, L. D. S., Pontes, A., Oliveira, D. F., ... & Bouskela, E. (2020). Effects of high intensity interval training on neuro-cardiovascular dynamic changes and mitochondrial dysfunction induced by high-fat diet in rats. Plos one, 15(10), e0240060. https://doi.org/10.1371/journal.pone.0240060

Martin-Smith, R., Cox, A., Buchan, D. S., Baker, J. S., Grace, F., & Sculthorpe, N. (2020). High intensity in-terval training (HIIT) improves cardiorespiratory fitness (CRF) in healthy, overweight and obese adolescents: a systematic review and meta-analysis of controlled stud-ies. International journal of environmental research and public health, 17(8), 2955. https://doi.org/10.3390/ijerph17082955

Michailidis, Y. (2024). The relationship between aerobic capacity, anthropometric characteristics, and performance in the yo-yo intermittent recovery test among elite young football play-ers: Differences between playing positions. Applied Sciences, 14(8), 3413. https://doi.org/10.3390/app14083413.

Neporadna, N. I., & Popel, S. L. (2019). Changes in the oxygen transport system of erythrocytes in test-ing the general endurance of students. Pedagogics, psychology, medical-biological prob-lems of physical training and sports, (1), 24-29. https://doi.org/10.15561/18189172.2019.0104

Nowak-Lis, A., Gabryś, T., Nowak, Z., Jastrzębski, P., Szmatlan-Gabryś, U., Konarska, A., ... & Pilis, A. (2021). The use of artificial hypoxia in endurance training in patients after myocardial infarction. International Journal of Environmental Research and Public Health, 18(4), 1633. https://doi.org/10.3390/ijerph18041633

Paprancová, A., Šimonek, J., Paška, Ľubomír., Czaková, M., & Krčmár, M. (2025). The impact of running- based high-intensity interval training with changes of direction on physical per-formance of female soccer players. Retos, 65, 262–270. https://doi.org/10.47197/retos.v65.110 640

Park, H. Y., Kim, J. W., & Nam, S. S. (2022). Metabolic, cardiac, and hemorheological responses to submaximal exercise under light and moderate hypobaric hypoxia in healthy men. Biology, 11(1), 144. https://doi.org/10.3390/biology11010144

Pramkratok, W., Songsupap, T., & Yimlamai, T. (2022). Repeated sprint training under hypoxia im-proves aerobic performance and repeated sprint ability by enhancing muscle deoxygenation and markers of angiogenesis in rugby sevens. European Journal of Applied Physiology, 122, 611 - 622. https://doi.org/10.1007/s00421-021-04861-8

Psarras, I. I., & Bogdanis, G. C. (2024). Physiological Responses and Performance during an Integrated High-Intensity Interval Aerobic and Power Training Protocol. Sports, 12(3), 76. https://doi.org/10.3390/sports12030076

Ramadhan, A. R., Alim, A., & Ayudi, A. R. (2022). Intensive and extensive interval training; which is bet-ter against Vo2max football athletes. International Journal of Multidisciplinary Research and Analysis, 5(12), 3483-3490. https://doi.org/10.47191/ijmra/v5-i12-25.

Sanches, A., Guzzoni, V., Miranda, V. C. D. R., Peressim, L. B., Rocha, S., de Lima, P. O., ... & Cunha, T. S. (2021). Recreational training improves cardiovascular adaptations, metabolic profile and mental health of elderly women with type-2 diabetes mellitus. Health Care for Women International, 42(11), 1279-1297. https://doi.org/10.1080/07399332.2020.1821689

Takei, N., Soo, J., Hatta, H., & Girard, O. (2021). Performance, metabolic, and neuromuscular conse-quences of repeated wingates in hypoxia and normoxia: A pilot study. International Journal of Sports Physiology and Performance, 16(8), 1208-1212.

https://doi.org/10.1123/ijspp.2020-0654.

Thomakos, P., Spyrou, K., Katsikas, C., Geladas, N. D., & Bogdanis, G. C. (2023). Effects of concurrent high- intensity and strength training on muscle power and aerobic performance in young soccer players during the pre-season. Sports, 11(3), 59. https://doi.org/10.3390/sports11030059

Tongwu, Y., & Chuanwei, D. (2025). The effectiveness of metabolic resistance training versus tradition-al cardio on athletic performance: a systematic review and meta-analysis. Frontiers in Physiology, 16, 1551645. https://doi.org/10.37766/inplasy2024.11.0024

Ulupınar, S., Özbay, S., Gençoğlu, C., Franchini, E., Kishalı, N. F., & Ince, I. (2021). Effects of sprint dis-tance and repetition number on energy system contributions in soccer players. Journal of Ex-ercise Science & Fitness, 19(3), 182-188. https://doi.org/10.1016/j.jesf.2021.03.003

Viscor, G., Torrella, J. R., Corral, L., Ricart, A., Javierre, C., Pages, T., & Ventura, J. L. (2018). Physiological and biological responses to short-term intermittent hypobaric hypoxia exposure: from sports and mountain medicine to new biomedical applications. Frontiers in Physiology, 9, 814. https://doi.org/10.3389/fphys.2018.00814

Warnier, G., Benoit, N., Naslain, D., Lambrecht, S., Francaux, M., & Deldicque, L. (2020). Effects of sprint interval training at different altitudes on cycling performance at sea-level. Sports, 8(11), 148. https://doi.org/10.3390/sports8110148

Weng, X., Lin, J., Yuan, Y., Lin, B., Huang, W., Tin, H. T., ... & Chen, H. (2021). Intermittent hypoxia expo-sure helps to restore the reduced hemoglobin concentration during intense exercise training in trained swimmers. Frontiers in Physiology, 12, 736108. https://doi.org/10.3389/fphys.2021.736108

Westmacott, A., Sanal-Hayes, N. E., McLaughlin, M., Mair, J. L., & Hayes, L. D. (2022). High-Intensity In-terval Training (HIIT) in Hypoxia Improves Maximal Aerobic Capacity More Than HIIT in normoxia: a systematic review, meta-analysis, and meta-regression. International Jour-nal of Environmental Research and Public Health, 19(21), 14261. https://doi.org/10.3390/ijerph192114261.

Wing, C., Hart, N. H., Ma’ayah, F., & Nosaka, K. (2022). Physical and technical demands of Australian football: an analysis of maximum ball in play periods. BMC Sports Science, Medicine and Rehabilitation, 14(1), 15. https://doi.org/10.1186/s13102-022-00405-5

Wu, Z., & Karim, Z. A. (2023). The Effects of Football Specific Anaerobic Training Design on Athletes’ Specific Anaerobic Ability. Int. J. Acad. Res. Bus. Soc. Sci, 13(2), 450-464. https://doi.org/10.6007/ijarbss/v13-i2/16096

Yamaguchi, K., Kasai, N., Hayashi, N., Yatsutani, H., Girard, O., & Goto, K. (2020). Acute performance and physiological responses to repeated‐sprint exercise in a combined hot and hypoxic environment. Physiological Reports, 8(12), e14466. https://doi.org/10.14814/phy2.14466

Żebrowska, A., Jastrzębski, D., Sadowska-Krępa, E., Sikora, M., & Di Giulio, C. (2019). Comparison of the Effectiveness of High‐Intensity Interval Training in Hypoxia and Normoxia in Healthy Male Volunteers: A Pilot Study. BioMed research international, 2019(1), 7315714. https://doi.org/10.1155/2019/7315714

Descargas

Publicado

2025-06-24

Cómo citar

Potisaen, D. J., Potisan, T., & Khumprommarach, S. (2025). Efectos del entrenamiento en intervalos de alta intensidad en condiciones hipóxicas sobre el rendimiento del sistema energético en futbolistas universitarios. Retos, 68, 1133–1147. https://doi.org/10.47197/retos.v68.115923

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas