La eficacia de la terapia de baño de hielo después del ejercicio de alta intensidad reduce los niveles de inflamación, el estrés oxidativo y la actividad de la creatina quinasa en varones adolescentes

Autores/as

  • Adi Pranoto Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga https://orcid.org/0000-0003-4080-9245
  • Irmantara Subagio Department of Sport Coaching Education, Faculty of Sport and Health Sciences, Universitas Negeri Surabaya
  • Gigih Siantoro Department of Sport Coaching Education, Faculty of Sport and Health Sciences, Universitas Negeri Surabaya
  • Afif Rusdiawan Department of Sport Science, Faculty of Sport and Health Sciences, Universitas Negeri Surabaya
  • Mochamad Purnomo Sport and Exercise Research Center, Universitas Negeri Surabaya
  • Donny Ardy Kusuma Sport and Exercise Research Center, Universitas Negeri Surabaya
  • Bhekti Lestari Department of Sport Coaching Education, Faculty of Sport and Health Sciences, Universitas Negeri Surabaya
  • Muhammad Kharis Fajar Departemen of Sport Coaching, Faculty of Vocational, Universitas Negeri Surabaya
  • I Dewa Made Aryananda Wijaya Kusuma Department of Sport Coaching Education, Faculty of Sport and Health Sciences, Universitas Negeri Surabaya
  • Bekir Erhan Orhan Faculty of Sports Sciences, Istanbul Aydın University

DOI:

https://doi.org/10.47197/retos.v68.116129

Palabras clave:

Ejercicio de alta intensidad, terapia de baño de hielo, modo de recuperación, atleta de fútbol

Resumen

Introducción: La recuperación es un componente vital de la actividad física, ya que sirve para restablecer el equilibrio fisiológico del cuerpo tras un esfuerzo intenso. Sin embargo, en la literatura actual, aún no se han publicado modelos eficaces y eficientes de terapia de recuperación. 

Objetivo: Este estudio cuasi-experimental tuvo como objetivo examinar los efectos de la terapia con baño de hielo después del ejercicio de alta intensidad sobre los marcadores de inflamación, estrés oxidativo y actividad de la creatina quinasa (CK) en varones adolescentes.

Metodología: Participaron veinte estudiantes universitarios varones (n = 20; entre 19 y 22 años) del programa de Formación en Fútbol de la Facultad de Ciencias del Deporte y la Salud de la Universidad Estatal de Surabaya (UNESA). Recibieron terapia con baño de hielo (IBT) después del ejercicio intenso durante cuatro semanas. Las concentraciones de IL-6 se midieron con un kit ELISA, los niveles de MDA con un kit colorimétrico y la actividad de CK con un kit de ensayo de actividad. Se utilizaron pruebas t para muestras apareadas e independientes y se calculó el tamaño del efecto (Cohen’s d) con un nivel de confianza del 95 %.

Resultados: Se observaron reducciones significativas en IL-6 (29.49 %), MDA (37.75 %) y actividad de CK (84.45 %) tras la intervención en el grupo IBT (todos p ≤ 0,005). También se observaron diferencias significativas entre grupos en los tres biomarcadores (todos p ≤ 0,05), con tamaños del efecto grandes a muy grandes (Cohen’s d > 1,7), lo que indica un fuerte impacto de la terapia.

Conclusiones: La terapia de baño de hielo después del ejercicio de alta intensidad puede ser un modelo terapéutico eficaz para reducir significativamente los niveles de actividad de IL-6, MDA y CK en varones adolescentes.

Citas

Andrews, J. L., Almeida, C. M., & Keller, B. A. (2024). Muscle damage and recovery in adolescent athletes following high-intensity training: A review. Journal of Applied Physiology, 137(3), 450–458. https://doi.org/10.1016/j.japhy.2024.03.006.

Banfi, G., & Melegati, G. (2008). Effect on sport hemolysis of cold water leg immersion in athletes after training sessions. Laboratory hematology : official publication of the International Society for Laboratory Hematology, 14(2), 15–18. https://doi.org/10.1532/LH96.08004.

Bleakley, C., McDonough, S., Gardner, E., Baxter, G. D., Hopkins, J. T., & Davison, G. W. (2012). Cold-water immersion (cryotherapy) for preventing and treating muscle soreness after exercise. The Cochrane database of systematic reviews, 2012(2), CD008262. https://doi.org/10.1002/14651858.CD008262.pub2.

Bond, B., Weston, K. L., Williams, C. A., & Barker, A. R. (2017). Perspectives on high-intensity interval exercise for health promotion in children and adolescents. Open Access Journal of Sports Medicine, 8, 243–265. https://doi.org/10.2147/OAJSM.S127395.

Faigenbaum, A. D., & Myer, G. D. (2009). Resistance training among young athletes: safety, efficacy and injury prevention effects. British Journal of Sports Medicine, 44(1), 56–63. https://doi.org/10.1136/bjsm.2009.068098.

Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., ... & Swain, D. P. (2011). Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Medicine and Science in Sports and Exercise, 43(7), 1334–1359. https://doi.org/10.1249/MSS.0b013e318213fefb.

Higgins, J.K., & Kleimbaun, A.P. (1985). Design Methodology for Randomized Clinical Trials; Family Health International: Arlington, VA, USA. pp. 24–25.

Hohenauer, E., Taeymans, J., Baeyens, J. P., Clarys, P., & Clijsen, R. (2015). The Effect of Post-Exercise Cryotherapy on Recovery Characteristics: A Systematic Review and Meta-Analysis. PloS one, 10(9), e0139028. https://doi.org/10.1371/journal.pone.0139028.

Hottenrott, L., Möhle, M., Ide, A., Ketelhut, S., Stoll, O., & Hottenrott, K. (2021). Recovery from Different High-Intensity Interval Training Protocols: Comparing Well-Trained Women and Men. Sports (Basel, Switzerland), 9(3), 34. https://doi.org/10.3390/sports9030034.

Ihsan, M., Abbiss, C. R., & Allan, R. (2021). Adaptations to Post-exercise Cold Water Immersion: Friend, Foe, or Futile?. Frontiers in sports and active living, 3, 714148. https://doi.org/10.3389/fspor.2021.714148.

Jurecka, A., Woźniak, A., Mila-Kierzenkowska, C., Augustyńska, B., Oleksy, Ł., Stolarczyk, A., & Gądek, A. (2023). The Influence of Single Whole-Body Cryostimulation on Cytokine Status and Oxidative Stress Biomarkers during Exhaustive Physical Effort: A Crossover Study. International Journal of Molecular Sciences, 24(6), 5559. https://doi.org/10.3390/ijms24065559.

Kellmann, M., Bertollo, M., Bosquet, L., Brink, M., Coutts, A. J., Duffield, R., Erlacher, D., Halson, S. L., Hecksteden, A., Heidari, J., Kallus, K. W., Meeusen, R., Mujika, I., Robazza, C., Skorski, S., Venter, R., & Beckmann, J. (2018). Recovery and Performance in Sport: Consensus Statement. International journal of sports physiology and performance, 13(2), 240–245. https://doi.org/10.1123/ijspp.2017-0759.

Krüger, K., & Mooren, F. C. (2014). Exercise-induced leukocyte apoptosis. Exercise immunology review, 20, 117–134.

Kusmierczyk, J., Wiecek, M., Bawelski, M., Szygula, Z., Rafa-Zablocka, K., Kantorowicz, M., & Szymura, J. (2024). Pre-exercise cryotherapy reduces myoglobin and creatine kinase levels after eccentric muscle stress in young women. Frontiers in physiology, 15, 1413949. https://doi.org/10.3389/fphys.2024.1413949.

Kusmierczyk, J., Wiecek, M., Bawelski, M., Szygula, Z., Rafa-Zablocka, K., Kantorowicz, M., & Szymura, J. (2024). Pre-exercise cryotherapy reduces myoglobin and creatine kinase levels after eccentric muscle stress in young women. Frontiers in physiology, 15, 1413949. https://doi.org/10.3389/fphys.2024.1413949.

Lee, D. C., Brellenthin, A. G., Thompson, P. D., Sui, X., Lee, I. M., & Lavie, C. J. (2017). Running as a Key Lifestyle Medicine for Longevity. Progress in cardiovascular diseases, 60(1), 45–55. https://doi.org/10.1016/j.pcad.2017.03.005.

Lee, M. C., Chung, Y. C., Thenaka, P. C., Wang, Y. W., Lin, Y. L., & Kan, N. W. (2024). Effects of different HIIT protocols on exercise performance, metabolic adaptation, and fat loss in middle-aged and older adults with overweight. International journal of medical sciences, 21(9), 1689–1700. https://doi.org/10.7150/ijms.96073.

Leite, C. D. F. C., Zovico, P. V. C., Rica, R. L., Barros, B. M., Machado, A. F., Evangelista, A. L., Leite, R. D., Barauna, V. G., Maia, A. F., & Bocalini, D. S. (2023). Exercise-Induced Muscle Damage after a High-Intensity Interval Exercise Session: Systematic Review. International journal of environmental research and public health, 20(22), 7082. https://doi.org/10.3390/ijerph20227082.

Ma, J. K., Shields, N., Chang, S., et al. (2024). The effects of high-intensity interval training on cardiorespiratory fitness in children and adolescents: A systematic review and meta-analysis. Journal of Sports Sciences, 42(1), 10–22. https://doi.org/10.1080/02640414.2023.2258927.

Mawhinney, C., Jones, H., & Low, D. A. (2017). Influence of cold-water immersion on limb blood flow after resistance exercise. European Journal of Sport Science, 17(5), 519–529. https://doi.org/10.1080/17461391.2017.1279222.

Mujika I. (2017). Quantification of Training and Competition Loads in Endurance Sports: Methods and Applications. International journal of sports physiology and performance, 12(Suppl 2), S29–S217.

Murray, A., & Cardinale, M. (2015). Cold applications for recovery in adolescent athletes: a systematic review and meta analysis. Extreme physiology & medicine, 4, 17. https://doi.org/10.1186/s13728-015-0035-8.https://doi.org/10.1123/ijspp.2016-0403.

Peake, J. M. (2019). Recovery after exercise: what is the current state of play? Current Opinion in Physiology, 10, 17–26. https://doi.org/10.1016/j.cophys.2019.03.007.

Peake, J. M. (2019). Recovery after exercise: What is the current state of play? Current Opinion in Physiology, 10, 17-26. https://doi.org/10.1016/j.cophys.2019.03.007.

Pingitore, A., Lima, G. P., Mastorci, F., Quinones, A., Iervasi, G., & Vassalle, C. (2015). Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition, 31(7–8), 916–922. https://doi.org/10.1016/j.nut.2015.02.005.

Sánchez-Ureña, B., Rojas-Valverde, D., & Gutiérrez-Vargas, R. (2018). Effectiveness of two cold water immersion protocols on neuromuscular function recovery: A tensiomyography study. Frontiers in Physiology, 9(JUN), 1–7. https://doi.org/10.3389/fphys.2018.00766.

Siqueira, A., Vieira, A., Ramos, G., Marqueti, R., Salvini, T., Puntel, G., & Durigan, J. (2017). Multiple cryotherapy applications attenuate oxidative stress following skeletal muscle injury. Redox Report, 22, 323 - 329. https://doi.org/10.1080/13510002.2016.1239880.

Štajer, V., Milovanović, I. M., Todorović, N., Ranisavljev, M., Pišot, S., & Drid, P. (2022). Let's (Tik) Talk About Fitness Trends. Frontiers in public health, 10, 899949. https://doi.org/10.3389/fpubh.2022.899949.

Sullivan, G. M., & Feinn, R. (2012). Using Effect Size-or Why the P Value Is Not Enough. Journal of graduate medical education, 4(3), 279–282. https://doi.org/10.4300/JGME-D-12-00156.1.

Vaile, J., Halson, S., Gill, N., & Dawson, B. (2008). Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. European journal of applied physiology, 102(4), 447–455. https://doi.org/10.1007/s00421-007-0605-6.

Weston, M., Taylor, K. L., Batterham, A. M., & Hopkins, W. G. (2014). Effects of low-volume high-intensity interval training (HIT) on fitness in adults: A meta-analysis of controlled and non-controlled trials. Sports Medicine, 44(7), 1005–1017. https://doi.org/10.1007/s40279-014-0180-z.

White, G. E., & Wells, G. D. (2013). Cold-water immersion and other forms of cryotherapy: Physiological changes potentially affecting recovery from high-intensity exercise. Extreme Physiology & Medicine, 2(1), 26. https://doi.org/10.1186/2046-7648-2-26.

Descargas

Publicado

2025-06-13

Cómo citar

Pranoto, A., Subagio, I., Siantoro, G., Rusdiawan, A., Purnomo, M., Kusuma, D. A., … Orhan, B. E. (2025). La eficacia de la terapia de baño de hielo después del ejercicio de alta intensidad reduce los niveles de inflamación, el estrés oxidativo y la actividad de la creatina quinasa en varones adolescentes. Retos, 68, 1404–1412. https://doi.org/10.47197/retos.v68.116129

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a

1 2 3 4 5 6 7 8 > >>