Competition data analysis: Using time series analysis techniques to predict competition outcomes
DOI:
https://doi.org/10.47197/retos.v67.114138Keywords:
outcome prediction, time series, neural networks, sports analysis.Abstract
A análise de dados esportivos evoluiu com o uso de técnicas avançadas de séries temporais para previsão de resultados em competições. O objetivo foi avaliar a eficácia dos modelos ARIMA, redes neurais recorrentes e aprendizagem profunda na previsão de resultados de competições esportivas, comparando sua precisão e capacidade de adaptação a diferentes variáveis contextuais. A metodologia baseou-se na análise de dados históricos de competições esportivas, aplicando modelos de séries temporais e técnicas de aprendizado de máquina. Foram utilizadas bases de dados desportivas com informação sobre o desempenho das equipas e dos jogadores, avaliando a capacidade preditiva dos modelos implementados. Os resultados indicaram que as redes neurais LSTM apresentaram melhor desempenho na previsão de resultados em comparação aos modelos tradicionais. A inclusão de variáveis contextuais, como a condição física dos jogadores e o ambiente de jogo, melhorou a precisão das previsões. Na discussão, os resultados foram consistentes com pesquisas que destacam a eficácia da aprendizagem profunda na análise de dados desportivos. No entanto, foi identificada a necessidade de continuar a otimizar a integração de múltiplas fontes de dados para melhorar a precisão das previsões. Concluiu-se que a utilização de técnicas de séries temporais representa uma ferramenta valiosa na previsão de resultados desportivos, com aplicações na tomada de decisões estratégicas e na análise de desempenho competitivo. Recomenda-se continuar a explorar abordagens híbridas e o uso de dados em tempo real para fortalecer a precisão preditiva em estudos futuros.
References
Alaminos, A., y Alaminos, A. (2021). Ajuste funcional y exploración de patrones en series temporales. Limencop S. L
Andrade, F. (2023). Un modelo de series de tiempo ARIMA para pronosticar la variable generadora de ingresos por negociaciones de renta variable en el mercado de valores en Ecuador. Figempa, 16(2). https://doi.org/10.29166/revfig.v16i2.4496
Arana, C. (2021) Redes neuronales recurrentes: Análisis de los modelos especializados en datos secuen-ciales, Serie Documentos de Trabajo, No. 797, Universidad del Centro de Estudios Macroeco-nómicos de Argentina (UCEMA). https://www.econstor.eu/bitstream/10419/238422/1/797.pdf
Baldinelli, F. (2024). Tecnologías avanzadas de análisis de datos deportivos y su impacto en las apues-tas. Lecturas: Educación Física y Deportes, 28(310), 224-231. Recuperado de https://www.efdeportes.com/efdeportes/index.php/EFDeportes/article/view/7500 [Fecha de consulta: 15 de Febrero de 2025]
Bunker, R., Yeung, C., y Fujii, K. (2024). Machine Learning for Soccer Match Result Prediction. Recupe-rado de https://arxiv.org/abs/2403.07669
Chakwate, R., y Madhan, R. A. (2020). Analysing Long Short Term Memory Models for Cricket Match Outcome Prediction. Recuperado de https://arxiv.org/abs/2011.02122
Chinmay, D., Soudeep, D., y Rishideep, R. (2024). Real-time forecasting within soccer matches through a Bayesian lens. Journal of the Royal Statistical Society Series A: Statistics in Society, 187, pp. 513–540 https://doi.org/10.1093/jrsssa/qnad136
Choi, H., Kim, S., y Park, J. (2023). Deep learning for sports prediction: A comprehensive review of ap-plications and methodologies. Journal of Sports Analytics, 9(1), 45-62.
Divekar, C., Deb, S., y Roy, R. (2023). Real-time forecasting within soccer matches through a Bayesian lens. Recuperado de https://arxiv.org/abs/2303.12401
Fierro, A. (2020). Predicción de Series Temporales con Redes Neuronales. (Tesis de pregrado, Universi-dad Nacional de La Plata) https://sedici.unlp.edu.ar/bitstream/handle/10915/114857/Documento_completo.pdf-PDFA.pdf?sequence=1&isAllowed=y
Gupta, A. (2019). Time Series Modeling for Dream Team in Fantasy Premier League. Recuperado de https://arxiv.org/abs/1909.12938
Hannes, L., Hagen W., y Woll, A. (2020). Success factors in football: an analysis of the German Bun-desliga. International Journal of Performance Analysis in Sport, 20. https://www.tandfonline.com/doi/full/10.1080/24748668.2020.1726157
Hernández, R., Fernández, C., y Baptista, P. (2014). Metodología de la Investigación. McGraw-Hill.
Juan Llamas, M. del C. (2021). Modelización matemática para la predicción y prevención de lesiones deportivas (Mathematical modeling for prediction and prevention of sports injuries). Retos, 39, 681–685. https://doi.org/10.47197/retos.v0i39.81315
Lepschy, H.; Wäsche, H; y Woll, A. (2020). Success factors in football: an analysis of the German Bun-desliga. International Journal of Performance Analysis in Sport, 20(2). DOI:10.1080/24748668.2020.1726157
Megía, D. (2023). Análisis de la eficiencia y competitividad en las competiciones de fútbol profesional. Enfoque de organizadores y clubes profesionales. Cuadernos Económicos de ICE, 106. DOI: https://doi.org/10.32796/cice.2023.106.7706
Mendes, T., y Mendes, J. (2020). Comparing State-of-the-Art Neural Network Ensemble Methods in Soc-cer Predictions. In: Helic, D., Leitner, G., Stettinger, M., Felfernig, A., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2020. Lecture Notes in Computer Science, 12117. Springer, Cham. https://doi.org/10.1007/978-3-030-59491-6_13
Poveda, P. (2023). Aplicación de redes neuronales convolucionales al diagnóstico de la enfermedad de Alzheimer a partir de imágenes MRI. (Trabajo de maestría, Universidad Politécnica de Madrid) https://oa.upm.es/75167/1/TFM_PATRICIA_POVEDA_HERNANDEZ.pdf
Rocha E., Wallan, I., y Fisher, C. (2021). The influence of crosses, shots, corner kicks and defensive movements in the results of Premier League matches. Research, Society and Development, 10(16). https://rsdjournal.org/index.php/rsd/article/view/24072
Song, K., Gao, Y., y Shi, J. (2020). Making real-time predictions for NBA basketball games by combining the historical data and bookmaker’s betting line. Elsevier, 547. https://doi.org/10.1016/j.physa.2020.124411
Soto-Valero, C. (2018). Aplicación de métodos de aprendizaje automático en el análisis y la predicción de resultados deportivos. Recuperado de https://www.researchgate.net/publication/320719749_Aplicacion_de_metodos_de_aprendizaje_automatico_en_el_analisis_y_la_prediccion_de_resultados_deportivos
Soykot, A., Nzmul, M., Abdul, M., y Mumenin, M. (2023). A Comparative Study of Machine Learning and Deep Learning Techniques for Diabetes Prediction. BAUET Journal, 4(1). DOI:10.59321/BAUETJ.V4I1.9
Wang, Y., Zhang, X., y Li, H. (2024). Advances in machine learning models for sports analytics and per-formance forecasting. International Journal of Data Science, 12(2), 78-95.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ronald Alexander Llerena Carrera

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.