The Effect of a Sodium Bicarbonate Drink on the Recovery of Anaerobic Fatigue and Lactic Acid After Exhausting Exercise
DOI:
https://doi.org/10.47197/retos.v67.111756Palavras-chave:
Sodium Bicarbonate, Recovery, Anaerobic fatigue, Lactic acid, Exhausting exerciseResumo
Introduction: Sodium bicarbonate (NaHCO₃) is an ergogenic agent that enhances the body's buffer capacity and reduces fatigue from lactic acid accumulation during anaerobic exercise. However, its effectiveness in intermittent sports like badminton is limited, necessitating further research.
Objective: This research aims to assess the impact of sodium bicarbonate intake on alleviating anaerobic fatigue and lowering lactic acid concentrations after strenuous exercise.
Methodology: The study involved 36 male badminton players from the Indonesian Badminton Association (PBSI) Jombang, divided into two groups: the treatment group (Sb) and the control group (Pla). Before the test, the Sb group consumed sodium bicarbonate solution to mitigate adverse effects, while the Pla group took mineral water. Participants engaged in anaerobic exercise, jogging at 95% of their heart rate. They were assessed using the RAST and Roche Cobas Accutrend Plus for lactic acid concentrations.
Results: The study found that sodium bicarbonate intake significantly reduced the rise in fatigue index and lactic acid concentrations compared to the control group. The control group experienced a mean increase of 3.658 ± 1.87 watts/s, while the treatment group showed a decrease of only 1.791 ± 1.65 watts/s.
Discussion: Sodium bicarbonate consumption significantly reduced the increase in fatigue index and lactic acid levels after anaerobic exercise, supporting its role as an effective strategy in maintaining badminton athlete performance.
Conclusions: Sodium bicarbonate stabilizes body pH by neutralizing lactic acid and H⁺ ions, reducing metabolic acidosis during intense anaerobic exercise. It may help reduce anaerobic fatigue in badminton athletes, but further studies are needed.
Referências
Bishop, D., Edge, J., Thomas, C., & Mercier, J. (2007). High-intensity exercise acutely decreases the membrane content of MCT1 and MCT4 and buffer capacity in human skeletal muscle. Journal of Applied Physiology, 102(2), 616–621. https://doi.org/10.1152/japplphysiol.00590.2006
Burke, L. M. (2013). Practical Considerations for Bicarbonate Loading and Sports Performance. Nestle Nutrition Institute Workshop Series, 75, 15–26. https://doi.org/10.1159/000345814
Chycki, J., Kurylas, A., Maszczyk, A., Golas, A., & Zajac, A. (2018). Alkaline water improves exercise-induced metabolic acidosis and enhances anaerobic exercise performance in combat sport athletes. PLoS ONE, 13(11), 1–10. https://doi.org/10.1371/journal.pone.0205708
Dalle, S., Koppo, K., & Hespel, P. (2021). Sodium bicarbonate improves sprint performance in endurance cycling. Journal of Science and Medicine in Sport, 24(3), 301–306. https://doi.org/10.1016/j.jsams.2020.09.011
Driller, M. W., Gregory, J. R., Williams, A. D., & Fell, J. W. (2012). The Effects Of Serial And Acute NaHCO3 Loading in Well- Trained Cyclist. Journal of Strenght and Conditioning Research, 26(10), 2791–2797.
Durkalec-Michalski, K., Zawieja, E. E., Podgórski, T., Zawieja, B. E., Michalowska, P., Lłoniewski, I., & Jeszka, J. (2018). The effect of a new sodium bicarbonate loading regimen on anaerobic capacity and wrestling performance. Nutrients, 10(6), 1–16. https://doi.org/10.3390/nu10060697
Forbes, S. C., Candow, D. G., Smith-ryan, A. E., Hirsch, K. R., Roberts, M. D., Vandusseldorp, T. A., Stratton, M. T., Kaviani, M., & Little, J. P. (2020). Supplements and nutritional interventions to augment high-intensity interval training physiological and performance adaptations — A narrative review. Nutrients, 12(2), 1–22. https://doi.org/10.3390/nu12020390
Grgic, J., Grgic, I., Del Coso, J., Schoenfeld, B. J., & Pedisic, Z. (2021). Effects of sodium bicarbonate supplementation on exercise performance: an umbrella review. Journal of the International Society of Sports Nutrition, 18(1), 1–13. https://doi.org/10.1186/s12970-021-00469-7
Hadzic, M., Eckstein, M. L., & Schugardt, M. (2019). The Impact of Sodium Bicarbonate on Performance in Response to Exercise Duration in Athletes: A Systematic Review. Journal of Sports Science & Medicine, 18(2), 271. /pmc/articles/PMC6544001/
Hartono, S., & Sukadiono. (2017). The effects of sodium bicarbonate and sodium citrate on blood pH, HCO3-, lactate metabolism and time to exhaustion. Sport Mont, 15(1), 13–16.
Hecksteden, A., Heinze, T., Faude, O., Kindermann, W., & Meyer, T. (2015). Validity of Lactate Thresholds in Inline Speed Skating. Journal of Strength and Conditioning Research, 29(9), 2497–2502. https://doi.org/10.1519/JSC.0b013e31828a485c
Hidayah, I. (2018). the Increased of Lactic Acid Concentration in the Blood After Work. The Indonesian Journal of Occupational Safety and Health, 7(2), 131–141.
Hilton, N. P., Leach, N. K., Sparks, S. A., Gough, L. A., Craig, M. M., Deb, S. K., & McNaughton, L. R. (2019). A Novel Ingestion Strategy for Sodium Bicarbonate Supplementation in a Delayed-Release Form: a Randomised Crossover Study in Trained Males. Sports Medicine - Open, 5(1). https://doi.org/10.1186/s40798-019-0177-0
Ito, S. (2019). High-intensity interval training for health benefits and care of cardiac diseases - The key to an efficient exercise protocol. World Journal of Cardiology, 11(7), 171–188. https://doi.org/10.4330/wjc.v11.i7.171
Krustrup, P., Ermidis, G., & Mohr, M. (2015a). Sodium bicarbonate intake improves high-intensity intermittent exercise performance in trained young men. Journal of the International Society of Sports Nutrition, 12(1). https://doi.org/10.1186/s12970-015-0087-6
Krustrup, P., Ermidis, G., & Mohr, M. (2015b). Sodium bicarbonate intake improves high-intensity intermittent exercise performance in trained young men. Journal of the International Society of Sports Nutrition, 12(1), 1–7. https://doi.org/10.1186/s12970-015-0087-6
Kuntze, G., Mansfield, N., & Sellers, W. (2010). A biomechanical analysis of common lunge tasks in badminton. Journal of Sports Sciences, 28(2), 183–191. https://doi.org/10.1080/02640410903428533
Lindh, A. M., Peyrebrune, M. C., Ingham, S. A., Bailey, D. M., & Folland, J. P. (2008). Sodium bicarbonate improves swimming performance. International Journal of Sports Medicine, 29(6), 519–523. https://doi.org/10.1055/s-2007-989228
Manansang, G. R., Rumampuk, J. F., & Moningka, M. E. W. (2018). Perbandingan Tekanan Darah Sebelum dan Sesudah Olahraga Angkat Berat. Jurnal E-Biomedik, 6(2). https://doi.org/10.35790/ebm.6.2.2018.21585
Mancha-Triguero, D., García-Rubio, J., Antúnez, A., & Ibáñez, S. J. (2020). Physical and Physiological Profiles of Aerobic and Anaerobic Capacities in Young Basketball Players. International Journal of Environmental Research and Public Health, 17(4), 1409. https://doi.org/10.3390/ijerph17041409
Miller, P., Robinson, A. L., Sparks, S. A., Bridge, C. A., Bentley, D. J., & McNaughton, L. R. (2016). The Effects of Novel Ingestion of Sodium Bicarbonate on Repeated Sprint Ability. Journal of Strength and Conditioning Research, 30(2), 561–568. https://doi.org/DOI: 10.1519/JSC.0000000000001126
Ooi, C. H., Tan, A., Ahmad, A., Kwong, K. W., Sompong, R., Ghazali, K. A. M., Liew, S. L., Chai, W. J., & Thompson, M. W. (2009). Physiological characteristics of elite and sub-elite badminton players. Journal of Sports Sciences, 27(14), 1591–1599. https://doi.org/10.1080/02640410903352907
Patel, H., Alkhawam, H., Madanieh, R., Shah, N., Kosmas, C. E., & Vittorio, T. J. (2017). Aerobic vs anaerobic exercise training effects on the cardiovascular system . World Journal of Cardiology, 9(2), 134. https://doi.org/10.4330/wjc.v9.i2.134
Phomsoupha, M., & Laffaye, G. (2015). The Science of Badminton: Game Characteristics, Anthropometry, Physiology, Visual Fitness and Biomechanics. Sports Medicine, 45(4), 473–495. https://doi.org/10.1007/s40279-014-0287-2
Pruscino, C. L., Ross, M. L. R., Gregory, J. R., Savage, B., & Flanagan, T. R. (2008). Effects of sodium bicarbonate, caffeine, and their combination on repeated 200-m freestyle performance. International Journal of Sport Nutrition and Exercise Metabolism, 18(2), 116–130. https://doi.org/10.1123/ijsnem.18.2.116
Ragone, L., Guilherme Vieira, J., Camaroti Laterza, M., Leitão, L., Da Silva Novaes, J., Macedo Vianna, J., & Ricardo Dias, M. (2020). Acute Effect of Sodium Bicarbonate Supplementation on Symptoms of Gastrointestinal Discomfort, Acid-Base Balance, and Performance of Jiu-Jitsu Athletes. Journal of Human Kinetics, 75(1), 85–93. https://doi.org/10.2478/hukin-2020-0039
Rusdiawan, A., & Habibi, A. I. (2020). Efek pemberian jus semangka kuning terhadap tekanan darah, kadar asam laktat, dan daya tahan anaerobik setelah aktivitas anaerobic. Jurnal SPORTIF : Jurnal Penelitian Pembelajaran. https://doi.org/10.29407/JS_UNPGRI.VI.13712
Rusdiawan, A., Mar, A., & Prihatiningsih, S. (2020). The Changes in pH Levels , Blood Lactic Acid and Fatigue Index to Anaerobic Exercise on Athlete After. Malaysian Journal of Medicine and Health Sciences, 16(10), 50–56.
Septiani, F. F., Ilyas, E. I., & Sadikin, M. (2010). Peran H + dalam Menimbulkan Kekelahan Otot : Pengaruhnya pada Sediaan Otot Rangka Rana Sp. Majalah Kedokteran Indonesia, 60(4), 178–180. http://staff.ui.ac.id/system/files/users/ermita.isfandiary/publication/majalah_kedokteran_indonesia_vol_60_april_2010.pdf
Shalayel, M., & Ahmed, S. (2010). Lactic acid – the innocent culprit of muscle fatigue. Sudan Journal of Medical Sciences, 5(2). https://doi.org/10.4314/sjms.v5i2.57816
Shelton, J., Kumar, G. V. P., Shelton, J., & Kumar, G. V. P. (2010). Sodium Bicarbonate—A Potent Ergogenic Aid? Food and Nutrition Sciences, 1(1), 1–4. https://doi.org/10.4236/FNS.2010.11001
Shi, Y., Shi, H., Nieman, D. C., Hu, Q., Yang, L., Liu, T., Zhu, X., Wei, H., Wu, D., Li, F., Cui, Y., & Chen, P. (2019). Lactic acid accumulation during exhaustive exercise impairs release of neutrophil extracellular traps in mice. Frontiers in Physiology, 10(JUN). https://doi.org/10.3389/fphys.2019.00709
Siegler, J. C., Marshall, P. W. M., Bishop, D., Shaw, G., & Green, S. (2016a). Mechanistic Insights into the Efficacy of Sodium Bicarbonate Supplementation to Improve Athletic Performance. Sports Medicine - Open, 2(1), 1–13. https://doi.org/10.1186/s40798-016-0065-9
Siegler, J. C., Marshall, P. W. M., Bishop, D., Shaw, G., & Green, S. (2016b). Mechanistic Insights into the Efficacy of Sodium Bicarbonate Supplementation to Improve Athletic Performance. Sports Medicine - Open 2016 2:1, 2(1), 1–13. https://doi.org/10.1186/S40798-016-0065-9
Sturgess, S., & Newton, R. U. (2008). Design and implementation of a specific strength program for badminton. Strength and Conditioning Journal, 30(3), 33–41. https://doi.org/10.1519/SSC.0b013e3181771008
Theofilidis, G., Bogdanis, G., Koutedakis, Y., & Karatzaferi, C. (2018). Monitoring Exercise-Induced Muscle Fatigue and Adaptations: Making Sense of Popular or Emerging Indices and Biomarkers. Sports, 6(4), 153. https://doi.org/10.3390/sports6040153
Wasserman, K. (1986). The anaerobic threshold: Definition, physiological significance and identification. Advances in Cardiology, Vol. 35(1), 1–23. https://doi.org/10.1159/000413434
Wee, E. H., Low, J. Y., Chan, K. Q., & Ler, H. Y. (2017). Effects of high intensity intermittent badminton multi-shuttle feeding training on aerobic and anaerobic capacity, leg strength qualities and agility. IcSPORTS 2017 - Proceedings of the 5th International Congress on Sport Sciences Research and Technology Support, icSPORTS, 39–47. https://doi.org/10.5220/0006501000390047
Westerblad, H., Allen, D. G., & Lännergren, J. (2002). Muscle fatigue: Lactic acid or inorganic phosphate the major cause? News in Physiological Sciences, 17(1), 17–21. https://doi.org/10.1152/physiologyonline.2002.17.1.17
Wiriawan, O., Rusdiawan, A., Kusuma, D. A., Firmansyah, A., García-Jiménez, J. V., Zein, M. I., Pavlovic, R., Nowak, A. M., Susanto, N., & Pranoto, A. (2024). Unilateral Hamstring Muscle Strengthening Exercises Can Improve Hamstring Asymmetry and Increase Jumping Performance in Sub-Elite Badminton Athletes. Retos, 54, 761–770. https://doi.org/10.47197/retos.v54.103783
Zhou, N., Fan, Y., Kong, X., Wang, X., Wang, J., & Wu, H. (2022). Effects of serial and acute enteric-coated sodium bicarbonate supplementation on anaerobic performance, physiological profile, and metabolomics in healthy young men. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.931671
Downloads
Publicado
Edição
Secção
Licença
Direitos de Autor (c) 2025 Abdul Hafidz, Afif Rusdiawan, Donny Ardy Kusuma, José Vicente García Jiménez, Kunjung Ashadi, Dio Alif Airlangga Daulay, Fatkur Rohman Kafrawi, Darul Husnul, Bhekti Lestari

Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-SemDerivações 4.0.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e assegurar a revista o direito de ser a primeira publicação da obra como licenciado sob a Licença Creative Commons Attribution que permite que outros para compartilhar o trabalho com o crédito de autoria do trabalho e publicação inicial nesta revista.
- Os autores podem estabelecer acordos adicionais separados para a distribuição não-exclusiva da versão do trabalho publicado na revista (por exemplo, a um repositório institucional, ou publicá-lo em um livro), com reconhecimento de autoria e publicação inicial nesta revista.
- É permitido e os autores são incentivados a divulgar o seu trabalho por via electrónica (por exemplo, em repositórios institucionais ou no seu próprio site), antes e durante o processo de envio, pois pode gerar alterações produtivas, bem como a uma intimação mais Cedo e mais do trabalho publicado (Veja O Efeito do Acesso Livre) (em Inglês).
Esta revista é a "política de acesso aberto" de Boai (1), apoiando os direitos dos usuários de "ler, baixar, copiar, distribuir, imprimir, pesquisar, ou link para os textos completos dos artigos". (1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess