Baja disponibilidad energética en atletas y su relación con la composición corporal: revisión de alcance

Autores/as

  • Mario Alejandro Muñoz Aristizábal Universidad Autónoma de Manizales https://orcid.org/0000-0002-3960-2565
  • Jose Armando Vidarte claros http://www.autonoma.edu.co

DOI:

https://doi.org/10.47197/retos.v68.115402

Palabras clave:

Atletas, Composición corporal, Gasto energético, Actividad física

Resumen

Introducción: En el campo del ejercicio, la disponibilidad energética es la energía disponible después de afrontar el ejercicio físico. Una baja disponibilidad energética puede generar grandes complicaciones de salud y de composición corporal.

Objetivo: El estudio consideró (a) explorar valores de composición corporal asociados a estados de disponibilidad energética, (b) identificar fórmulas algebraicas y características sobre el gasto energético del ejercicio y (c) discutir los hallazgos sobre las variables que componen la estimación de la disponibilidad energética.

Metodología: Bajo la guía (PRISMA-ScR), se realizó un análisis descriptivo sobre la evidencia encontrada en las bases de datos Scopus, EMBASE, ScienceDirect y PubMed/MEDLINE, en febrero de 2025.

Resultados: según los hallazgos 54 estudios cumplieron con los criterios de selección, encontrando 1219 mujeres y 599 hombres de diferentes deportes y edades. En el 53.15% de las mujeres y el 31.21% de los hombres, se halló baja disponibilidad energética clínica con valores de composición corporal en amplios rangos.

Discusión: La disponibilidad energética en atletas varía según características del cálculo, métodos de estimación del gasto energético y composición corporal. Diferencias en metodologías, como el uso incorrecto de fórmulas, pueden inducir errores en su medición. Es necesario estandarizar conceptual y procedimentalmente, para mitigar posibles distorsiones.

Conclusiones: Distinguir entre las mejores prácticas y métodos para estimar la ingesta y el gasto energéticos del ejercicio supone una solución a la heterogeneidad de los resultados, a su vez, indicadores de composición corporal como el índice de masa libre de grasa podría ofrecer mejores relaciones con la disponibilidad energética.

Biografía del autor/a

Mario Alejandro Muñoz Aristizábal, Universidad Autónoma de Manizales

Estudiante de la Maestría en Actividad física y deporte 

Facultad de salud

Citas

Abulmeaty, M. M. A., Almajwal, A., Elsayed, M., Hassan, H., Alsager, T., & Aldossari, Z. (2024). Resting Metabolic Rate and Substrate Utilization during Energy and Protein Availability in Male and Female Athletes. Metabolites, 14(3). https://doi.org/10.3390/metabo14030167

Areta, J. L., Jeukendrup, A. E., Van Genechten, L., Langan-Evans, C., Pedlar, C. R., Rodas, G., Sale, C., & Walsh, N. P. (2025). Limited Empirical Support for Relative Energy Deficiency in Sport (REDs) Syndrome. Sports Med. https://doi.org/10.1007/s40279-025-02220-7

Areta, J. L., Taylor, H. L., & Koehler, K. (2021). Low energy availability: history, definition and evidence of its endocrine, metabolic and physiological effects in prospective studies in females and males. Eur J Appl Physiol, 121(1), 1–21. https://doi.org/10.1007/s00421-020-04516-0

Arksey, H., & O'Malley, L. (2005). Scoping studies: towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19–32. https://doi.org/10.1080/1364557032000119616

Assessment of Body Composition and Total Energy Expenditure in Humans Using Stable Isotope Tech-niques. (2009). INTERNATIONAL ATOMIC ENERGY AGENCY.

Besor, O., Redlich, N., Constantini, N., Weiler-Sagie, M., Monsonego Ornan, E., Lieberman, S., Bentur, L., & Bar-Yoseph, R. (2024). Assessment of Relative Energy Deficiency in Sport (REDs) Risk among Adolescent Acrobatic Gymnasts. J Pers Med, 14(4). https://doi.org/10.3390/jpm14040363

Bonilla, D. A., De Leon, L. G., Alexander-Cortez, P., Odriozola-Martinez, A., Herrera-Amante, C. A., Vargas-Molina, S., & Petro, J. L. (2022). Simple anthropometry-based calculations to monitor body composition in athletes: Scoping review and reference values. Nutr Health, 28(1), 95–109. https://doi.org/10.1177/02601060211002941

Bonilla, D. A., Kreider, R. B., Petro, J. L., Romance, R., Garcia-Sillero, M., Benitez-Porres, J., & Vargas-Molina, S. (2021). Creatine Enhances the Effects of Cluster-Set Resistance Training on Lower-Limb Body Composition and Strength in Resistance-Trained Men: A Pilot Study. Nutrients, 13(7). https://doi.org/10.3390/nu13072303

Bonilla, D. A., Peralta-Alzate, J. O., Bonilla-Henao, J. A., Cannataro, R., Cardozo, L. A., Vargas-Molina, S., Stout, J. R., Kreider, R. B., & Petro, J. L. (2023). Insights into Non-Exercise Physical Activity on Control of Body Mass: A Review with Practical Recommendations. J Funct Morphol Kinesiol, 8(2). https://doi.org/10.3390/jfmk8020044

Brandner, C. F., Harty, P. S., Luedke, J. A., Erickson, J. L., & Jagim, A. R. (2022). Sport Differences in Fat-Free Mass Index Among a Diverse Sample of NCAA Division III Collegiate Athletes. J Strength Cond Res, 36(8), 2212–2217. https://doi.org/10.1519/JSC.0000000000004267

Campa, F., Gobbo, L. A., Stagi, S., Cyrino, L. T., Toselli, S., Marini, E., & Coratella, G. (2022). Bioelectrical impedance analysis versus reference methods in the assessment of body composition in ath-letes. Eur J Appl Physiol, 122(3), 561–589. https://doi.org/10.1007/s00421-021-04879-y

Campa, F., Toselli, S., Mazzilli, M., Gobbo, L. A., & Coratella, G. (2021). Assessment of Body Composition in Athletes: A Narrative Review of Available Methods with Special Reference to Quantitative and Qualitative Bioimpedance Analysis. Nutrients, 13(5). https://doi.org/10.3390/nu13051620

Carbone, J. W., McClung, J. P., & Pasiakos, S. M. (2019). Recent Advances in the Characterization of Skel-etal Muscle and Whole-Body Protein Responses to Dietary Protein and Exercise during Negative Energy Balance. Adv Nutr, 10(1), 70–79. https://doi.org/10.1093/advances/nmy087

Casanova, N., Beaulieu, K., Finlayson, G., & Hopkins, M. (2019). Metabolic adaptations during negative energy balance and their potential impact on appetite and food intake. Proc Nutr Soc, 78(3), 279–289. https://doi.org/10.1017/S0029665118002811

Cetiner-Oksin, B., Guzel, Y., Aktitiz, S., Kosar, S. N., & Turnagol, H. H. (2023). Energy balance and energy availability of female basketball players during the preparation period. J Am Nutr Assoc, 42(8), 807–813. https://doi.org/10.1080/27697061.2023.2183432

Cupka, M., & Sedliak, M. (2023). Hungry runners - low energy availability in male endurance athletes and its impact on performance and testosterone: mini-review. Eur J Transl Myol, 33(2). https://doi.org/10.4081/ejtm.2023.11104

Currier, B. S., Harty, P. S., Zabriskie, H. A., Stecker, R. A., Moon, J. M., Jagim, A. R., & Kerksick, C. M. (2019). Fat-Free Mass Index in a Diverse Sample of Male Collegiate Athletes. J Strength Cond Res, 33(6), 1474–1479. https://doi.org/10.1519/JSC.0000000000003158

Dasa, M. S., Friborg, O., Kristoffersen, M., Pettersen, G., Plasqui, G., Sundgot-Borgen, J. K., & Rosenvinge, J. H. (2023). Energy expenditure, dietary intake and energy availability in female professional football players. BMJ Open Sport Exerc Med, 9(1), e001553. https://doi.org/10.1136/bmjsem-2023-001553

Dasa, M. S., Friborg, O., Kristoffersen, M., Pettersen, G., Sundgot-Borgen, J., & Rosenvinge, J. H. (2022). Accuracy of Tracking Devices' Ability to Assess Exercise Energy Expenditure in Professional Female Soccer Players: Implications for Quantifying Energy Availability. Int J Environ Res Pub-lic Health, 19(8). https://doi.org/10.3390/ijerph19084770

de Souza, L. C., Moris, J. M., Lee, K. M., Fant, K. H., Gallucci, A., & Funderburk, L. K. (2024). Dietary Intake and Menstrual Health among Acrobatics and Tumbling NCAA Division I Student-Athletes. J Am Nutr Assoc, 43(1), 101–109. https://doi.org/10.1080/27697061.2023.2218458

De Souza, M. J., Koltun, K. J., & Williams, N. I. (2019). What is the evidence for a Triad-like syndrome in exercising men? Current Opinion in Physiology, 10, 27–34.

De Souza, M. J., Nattiv, A., Joy, E., Misra, M., Williams, N. I., Mallinson, R. J., Gibbs, J. C., Olmsted, M., Goolsby, M., Matheson, G., & Expert, P. (2014). 2014 Female Athlete Triad Coalition Consensus Statement on Treatment and Return to Play of the Female Athlete Triad: 1st International Con-ference held in San Francisco, California, May 2012 and 2nd International Conference held in Indianapolis, Indiana, May 2013. Br J Sports Med, 48(4), 289. https://doi.org/10.1136/bjsports-2013-093218

Dzator, S., Weerasekara, I., Shields, M., Haslam, R., & James, D. (2023). Agreement Between Dual-Energy X-ray Absorptiometry and Bioelectric Impedance Analysis for Assessing Body Composition in Athletes: A Systematic Review and Meta-Analysis. Clin J Sport Med, 33(5), 557–568. https://doi.org/10.1097/JSM.0000000000001136

Ekelund, U., Yngve, A., Westerterp, K., & Sjostrom, M. (2002). Energy expenditure assessed by heart rate and doubly labeled water in young athletes. Med Sci Sports Exerc, 34(8), 1360–1366. https://doi.org/10.1097/00005768-200208000-00019

Fensham, N. C., Heikura, I. A., McKay, A. K. A., Tee, N., Ackerman, K. E., & Burke, L. M. (2022). Short-Term Carbohydrate Restriction Impairs Bone Formation at Rest and During Prolonged Exercise to a Greater Degree than Low Energy Availability. J Bone Miner Res, 37(10), 1915–1925. https://doi.org/10.1002/jbmr.4658

Fernandez-Verdejo, R., Sanchez-Delgado, G., & Ravussin, E. (2024). Energy Expenditure in Humans: Principles, Methods, and Changes Throughout the Life Course. Annu Rev Nutr, 44(1), 51–76. https://doi.org/10.1146/annurev-nutr-062122-031443

Fredericson, M., Kussman, A., Misra, M., Barrack, M. T., De Souza, M. J., Kraus, E., Koltun, K. J., Williams, N. I., Joy, E., & Nattiv, A. (2021). The Male Athlete Triad-A Consensus Statement From the Fe-male and Male Athlete Triad Coalition Part II: Diagnosis, Treatment, and Return-To-Play. Clin J Sport Med, 31(4), 349–366. https://doi.org/10.1097/JSM.0000000000000948

Garay, J. L., Sebe, J. G., Strickland, J., Graves, L., & Voss, M. A. (2025). Use of Resting Metabolic Rate Ratio as a Relative Energy Deficiency in Sports Indicator in Female Athletes. Current Developments in Nutrition, 9(5), 106007. https://doi.org/https://doi.org/10.1016/j.cdnut.2025.106007

Gogojewicz, A., Straburzynska-Lupa, A., Podgorski, T., Frajtag, P., Bibrowicz, K., & Sliwicka, E. (2023). Assessment of the Dietary Intake and Nutritional Status of Polish Professional Futsal Players: A Descriptive Study-Do Futsal Players Require Nutritional Education? Nutrients, 15(17). https://doi.org/10.3390/nu15173720

Guss, C. E., McAllister, A., & Gordon, C. M. (2021). DXA in Children and Adolescents. J Clin Densitom, 24(1), 28–35. https://doi.org/10.1016/j.jocd.2020.01.006

Haines, M. S., Kaur, S., Scarff, G., Lauze, M., Gerweck, A., Slattery, M., Oreskovic, N. M., Ackerman, K. E., Tenforde, A. S., Popp, K. L., Bouxsein, M. L., Miller, K. K., & Misra, M. (2023). Male Runners With Lower Energy Availability Have Impaired Skeletal Integrity Compared to Nonathletes. J Clin Endocrinol Metab, 108(10), e1063–e1073. https://doi.org/10.1210/clinem/dgad215

Halsey, L. G. (2021). The Mystery of Energy Compensation. Physiol Biochem Zool, 94(6), 380–393. https://doi.org/10.1086/716467

Heikura, I. A., Stellingwerff, T., & Areta, J. L. (2022). Low energy availability in female athletes: From the lab to the field. Eur J Sport Sci, 22(5), 709–719. https://doi.org/10.1080/17461391.2021.1915391

Heikura, I. A., Uusitalo, A. L. T., Stellingwerff, T., Bergland, D., Mero, A. A., & Burke, L. M. (2018). Low Energy Availability Is Difficult to Assess but Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes. Int J Sport Nutr Exerc Metab, 28(4), 403–411. https://doi.org/10.1123/ijsnem.2017-0313

Heymsfield, S. B., Brown, J., Ramirez, S., Prado, C. M., Tinsley, G. M., & Gonzalez, M. C. (2024). Are Lean Body Mass and Fat-Free Mass the Same or Different Body Components? A Critical Perspective. Adv Nutr, 15(12), 100335. https://doi.org/10.1016/j.advnut.2024.100335

Heymsfield, S. B., Gallagher, D., Kotler, D. P., Wang, Z., Allison, D. B., & Heshka, S. (2002). Body-size de-pendence of resting energy expenditure can be attributed to nonenergetic homogeneity of fat-free mass. Am J Physiol Endocrinol Metab, 282(1), E132–138. https://doi.org/10.1152/ajpendo.2002.282.1.E132

Hill, J. O., Wyatt, H. R., & Peters, J. C. (2013). The Importance of Energy Balance. Eur Endocrinol, 9(2), 111–115. https://doi.org/10.17925/EE.2013.09.02.111

Hills, A. P., Mokhtar, N., & Byrne, N. M. (2014). Assessment of physical activity and energy expenditure: an overview of objective measures. Front Nutr, 1, 5. https://doi.org/10.3389/fnut.2014.00005

Jagim, A. R., Harty, P. S., Jones, M. T., Fields, J. B., Magee, M., Smith-Ryan, A. E., Luedke, J., & Kerksick, C. M. (2024). Fat-Free Mass Index in Sport: Normative Profiles and Applications for Collegiate Ath-letes. J Strength Cond Res, 38(9), 1687–1693. https://doi.org/10.1519/JSC.0000000000004864

Jeukendrup, A. E., Areta, J. L., Van Genechten, L., Langan-Evans, C., Pedlar, C. R., Rodas, G., Sale, C., & Walsh, N. P. (2024). Does Relative Energy Deficiency in Sport (REDs) Syndrome Exist? Sports Med, 54(11), 2793–2816. https://doi.org/10.1007/s40279-024-02108-y

Jurov, I., Keay, N., Hadzic, V., Spudic, D., & Rauter, S. (2021). Relationship between energy availability, energy conservation and cognitive restraint with performance measures in male endurance athletes. J Int Soc Sports Nutr, 18(1), 24. https://doi.org/10.1186/s12970-021-00419-3

Kettunen, O., Mikkonen, R., Linnamo, V., Mursu, J., Kyrolainen, H., & Ihalainen, J. K. (2023). Nutritional intake and anthropometric characteristics are associated with endurance performance and markers of low energy availability in young female cross-country skiers. J Int Soc Sports Nutr, 20(1), 2226639. https://doi.org/10.1080/15502783.2023.2226639

Kettunen, O., Mikkonen, R., Mursu, J., Linnamo, V., & Ihalainen, J. K. (2023). Carbohydrate intake in young female cross-country skiers is lower than recommended and affects competition per-formance. Front Sports Act Living, 5, 1196659. https://doi.org/10.3389/fspor.2023.1196659

Kinoshita, N., Uchiyama, E., Ishikawa-Takata, K., Yamada, Y., & Okuyama, K. (2021). Association of en-ergy availability with resting metabolic rates in competitive female teenage runners: a cross-sectional study. J Int Soc Sports Nutr, 18(1), 70. https://doi.org/10.1186/s12970-021-00466-w

Klein, D. J., McClain, P., Montemorano, V., & Santacroce, A. (2023). Pre-Season Nutritional Intake and Prevalence of Low Energy Availability in NCAA Division III Collegiate Swimmers. Nutrients, 15(13). https://doi.org/10.3390/nu15132827

Kuhlman, N. M., Jones, M. T., Jagim, A. R., Magee, M. K., Wilcox, L., & Fields, J. B. (2024). Dietary intake, energy availability, and power in men collegiate gymnasts. Front Sports Act Living, 6, 1448197. https://doi.org/10.3389/fspor.2024.1448197

Kyle, U. G., Bosaeus, I., De Lorenzo, A. D., Deurenberg, P., Elia, M., Gomez, J. M., Heitmann, B. L., Kent-Smith, L., Melchior, J. C., Pirlich, M., Scharfetter, H., Schols, A. M., & Pichard, C. (2004). Bioelectri-cal impedance analysis-part II: utilization in clinical practice. Clin Nutr, 23(6), 1430–1453. https://doi.org/10.1016/j.clnu.2004.09.012

Kyle, U. G., Bosaeus, I., De Lorenzo, A. D., Deurenberg, P., Elia, M., Gomez, J. M., Heitmann, B. L., Kent-Smith, L., Melchior, J. C., Pirlich, M., Scharfetter, H., Schols, A. M., Pichard, C., & Composition of the, E. W. G. (2004). Bioelectrical impedance analysis--part I: review of principles and methods. Clin Nutr, 23(5), 1226–1243. https://doi.org/10.1016/j.clnu.2004.06.004

Lagowska, K., & Kapczuk, K. (2016). Testosterone concentrations in female athletes and ballet dancers with menstrual disorders. Eur J Sport Sci, 16(4), 490–497. https://doi.org/10.1080/17461391.2015.1034786

Lagowska, K., Kapczuk, K., Friebe, Z., & Bajerska, J. (2014). Effects of dietary intervention in young fe-male athletes with menstrual disorders. J Int Soc Sports Nutr, 11, 21. https://doi.org/10.1186/1550-2783-11-21

Lee, S., Kuniko, M., Han, S., Oh, T., & Taguchi, M. (2020). Association of Low Energy Availability and Suppressed Metabolic Status in Korean Male Collegiate Soccer Players: A Pilot Study. Am J Mens Health, 14(6), 1557988320982186. https://doi.org/10.1177/1557988320982186

Lee, S., Moto, K., Han, S., Oh, T., & Taguchi, M. (2021). Within-Day Energy Balance and Metabolic Sup-pression in Male Collegiate Soccer Players. Nutrients, 13(8). https://doi.org/10.3390/nu13082644

Levac, D., Colquhoun, H., & O'Brien, K. K. (2010). Scoping studies: advancing the methodology. Imple-ment Sci, 5, 69. https://doi.org/10.1186/1748-5908-5-69

Lewiecki, E. M., Binkley, N., Morgan, S. L., Shuhart, C. R., Camargos, B. M., Carey, J. J., Gordon, C. M., Jan-kowski, L. G., Lee, J. K., Leslie, W. D., & International Society for Clinical, D. (2016). Best Practic-es for Dual-Energy X-ray Absorptiometry Measurement and Reporting: International Society for Clinical Densitometry Guidance. J Clin Densitom, 19(2), 127–140. https://doi.org/10.1016/j.jocd.2016.03.003

Liang, Y., Li, Y., Chen, Y., Meng, K., Zhou, F., Pei, Y., Liu, Y., & Qiu, J. (2025). The impact of low energy availability risk on pre-competition physiological function in Chinese female combat athletes. J Int Soc Sports Nutr, 22(1), 2490170. https://doi.org/10.1080/15502783.2025.2490170

Loucks, A. B. (2013). Energy Balance and Energy Availability. In The Encyclopaedia of Sports Medicine (pp. 72–87). https://doi.org/https://doi.org/10.1002/9781118692318.ch5

Loucks, A. B. (2020). Exercise Training in the Normal Female: Effects of Low Energy Availability on Reproductive Function. In A. C. Hackney & N. W. Constantini (Eds.), Endocrinology of Physical Activity and Sport (pp. 171–191). Springer International Publishing. https://doi.org/10.1007/978-3-030-33376-8_11

Loucks, A. B., Kiens, B., & Wright, H. H. (2011). Energy availability in athletes. J Sports Sci, 29 Suppl 1, S7–15. https://doi.org/10.1080/02640414.2011.588958

Loucks, A. B., & Verdun, M. (1998). Slow restoration of LH pulsatility by refeeding in energetically dis-rupted women. Am J Physiol, 275(4), R1218–1226. https://doi.org/10.1152/ajpregu.1998.275.4.R1218

Lundstrom, E. A., Williams, N. I., Allaway, H. C. M., Salamunes, A. C. C., & De Souza, M. J. (2025). Pre-Season Energy Deficiency Predicts Poorer Performance During a Competitive Season in Colle-giate Female Long-Distance Runners. Eur J Sport Sci, 25(3), e12261. https://doi.org/10.1002/ejsc.12261

Macuh, M., Levec, J., Kojic, N., & Knap, B. (2022). Dietary Intake, Body Composition and Performance of Professional Football Athletes in Slovenia. Nutrients, 15(1). https://doi.org/10.3390/nu15010082

Magee, M. K., Lockard, B. L., Zabriskie, H. A., Schaefer, A. Q., Luedke, J. A., Erickson, J. L., Jones, M. T., & Jagim, A. R. (2020). Prevalence of Low Energy Availability in Collegiate Women Soccer Athletes. J Funct Morphol Kinesiol, 5(4). https://doi.org/10.3390/jfmk5040096

McArdle, W. D., Katch, F. I., & Katch, V. L. (2015). Exercise Physiology: Nutrition, Energy, and Human Performance. Wolters Kluwer Health/Lippincott Williams & Wilkins.

McGowan, J., Straus, S., Moher, D., Langlois, E. V., O'Brien, K. K., Horsley, T., Aldcroft, A., Zarin, W., Garit-ty, C. M., Hempel, S., Lillie, E., Tuncalp, Ӧ., & Tricco, A. C. (2020). Reporting scoping reviews-PRISMA ScR extension. J Clin Epidemiol, 123, 177–179. https://doi.org/10.1016/j.jclinepi.2020.03.016

McGuire, A., Warrington, G., & Doyle, L. (2023a). Energy availability and macronutrient intake in elite male Gaelic football players. Sci Med Footb, 7(1), 1–7. https://doi.org/10.1080/24733938.2022.2029551

McGuire, A., Warrington, G., & Doyle, L. (2023b). Prevalence of low energy availability and associations with seasonal changes in salivary hormones and IgA in elite male Gaelic footballers. Eur J Nutr, 62(4), 1809–1820. https://doi.org/10.1007/s00394-023-03112-0

McGuire, A., Warrington, G., Walsh, A., Byrne, T., & Doyle, L. (2024). Measurement of energy availability in highly trained male endurance athletes and examination of its associations with bone health and endocrine function. Eur J Nutr, 63(7), 2655–2665. https://doi.org/10.1007/s00394-024-03433-8

McHaffie, S. J., Langan-Evans, C., Strauss, J. A., Areta, J. L., Rosimus, C., Evans, M., Waghorn, R., & Morton, J. P. (2023). Under-Fuelling for the Work Required? Assessment of Dietary Practices and Physi-cal Loading of Adolescent Female Soccer Players during an Intensive International Training and Game Schedule. Nutrients, 15(21). https://doi.org/10.3390/nu15214508

Melin, A., Tornberg, A. B., Skouby, S., Moller, S. S., Faber, J., Sundgot-Borgen, J., & Sjodin, A. (2016). Low-energy density and high fiber intake are dietary concerns in female endurance athletes. Scand J Med Sci Sports, 26(9), 1060–1071. https://doi.org/10.1111/sms.12516

Melin, A. K., Areta, J. L., Heikura, I. A., Stellingwerff, T., Torstveit, M. K., & Hackney, A. C. (2024). Direct and indirect impact of low energy availability on sports performance. Scand J Med Sci Sports, 34(1), e14327. https://doi.org/10.1111/sms.14327

Melin, A. K., Heikura, I. A., Tenforde, A., & Mountjoy, M. (2019). Energy Availability in Athletics: Health, Performance, and Physique. Int J Sport Nutr Exerc Metab, 29(2), 152–164. https://doi.org/10.1123/ijsnem.2018-0201

Mitchell, L., Wilson, L., Duthie, G., Pumpa, K., Weakley, J., Scott, C., & Slater, G. (2024). Methods to Assess Energy Expenditure of Resistance Exercise: A Systematic Scoping Review. Sports Med, 54(9), 2357–2372. https://doi.org/10.1007/s40279-024-02047-8

Monedero, J., Duff, C., & Egan, B. (2023). Dietary Intakes and the Risk of Low Energy Availability in Male and Female Advanced and Elite Rock Climbers. J Strength Cond Res, 37(3), e8–e15. https://doi.org/10.1519/JSC.0000000000004317

Moore, S. R., Baker, P. A., & Smith-Ryan, A. E. (2025). Utility of fat-free adipose tissue correction formu-la for tracking body composition changes with dual-energy X-ray absorptiometry. Clin Physiol Funct Imaging, 45(1), e12915. https://doi.org/10.1111/cpf.12915

Moro, T., Marcolin, G., Bianco, A., Bolzetta, F., Berton, L., Sergi, G., & Paoli, A. (2020). Effects of 6 Weeks of Traditional Resistance Training or High Intensity Interval Resistance Training on Body Com-position, Aerobic Power and Strength in Healthy Young Subjects: A Randomized Parallel Trial. Int J Environ Res Public Health, 17(11). https://doi.org/10.3390/ijerph17114093

Mountjoy, M., Ackerman, K. E., Bailey, D. M., Burke, L. M., Constantini, N., Hackney, A. C., Heikura, I. A., Melin, A., Pensgaard, A. M., Stellingwerff, T., Sundgot-Borgen, J. K., Torstveit, M. K., Jacobsen, A. U., Verhagen, E., Budgett, R., Engebretsen, L., & Erdener, U. (2023). 2023 International Olympic Committee's (IOC) consensus statement on Relative Energy Deficiency in Sport (REDs). Br J Sports Med, 57(17), 1073–1097. https://doi.org/10.1136/bjsports-2023-106994

Mountjoy, M., Sundgot-Borgen, J., Burke, L., Ackerman, K. E., Blauwet, C., Constantini, N., Lebrun, C., Lundy, B., Melin, A., Meyer, N., Sherman, R., Tenforde, A. S., Torstveit, M. K., & Budgett, R. (2018). International Olympic Committee (IOC) Consensus Statement on Relative Energy Deficiency in Sport (RED-S): 2018 Update. Int J Sport Nutr Exerc Metab, 28(4), 316–331. https://doi.org/10.1123/ijsnem.2018-0136

Mountjoy, M. L., Ackerman, K. E., Bailey, D. M., Burke, L. M., Constantini, N., Hackney, A. C., Heikura, I. A., Melin, A. K., Pensgaard, A. M., Stellingwerff, T., Sundgot-Borgen, J., Torstveit, M. K., Uhrenholdt-Jacobsen, A., Verhagen, E., Budgett, R., Engebretsen, L., & Erdener, U. (2025). Yes: Relative Ener-gy Deficiency in Sport (REDs) Does Exist! Sports Med. https://doi.org/10.1007/s40279-025-02219-0

Muia, E. N., Wright, H. H., Onywera, V. O., & Kuria, E. N. (2016). Adolescent elite Kenyan runners are at risk for energy deficiency, menstrual dysfunction and disordered eating. J Sports Sci, 34(7), 598–606. https://doi.org/10.1080/02640414.2015.1065340

Munn, Z., Peters, M. D. J., Stern, C., Tufanaru, C., McArthur, A., & Aromataris, E. (2018). Systematic re-view or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med Res Methodol, 18(1), 143. https://doi.org/10.1186/s12874-018-0611-x

Mursu, J., Ristimaki, M., Malinen, I., Petaja, P., Isola, V., Ahtiainen, J. P., & Hulmi, J. J. (2023). Dietary In-take, Serum Hormone Concentrations, Amenorrhea and Bone Mineral Density of Physique Ath-letes and Active Gym Enthusiasts. Nutrients, 15(2). https://doi.org/10.3390/nu15020382

Nattiv, A., De Souza, M. J., Koltun, K. J., Misra, M., Kussman, A., Williams, N. I., Barrack, M. T., Kraus, E., Joy, E., & Fredericson, M. (2021). The Male Athlete Triad-A Consensus Statement From the Fe-male and Male Athlete Triad Coalition Part 1: Definition and Scientific Basis. Clin J Sport Med, 31(4), 335–348. https://doi.org/10.1097/JSM.0000000000000946

Oxfeldt, M., Phillips, S. M., Andersen, O. E., Johansen, F. T., Bangshaab, M., Risikesan, J., McKendry, J., Melin, A. K., & Hansen, M. (2023). Low energy availability reduces myofibrillar and sarcoplas-mic muscle protein synthesis in trained females. J Physiol, 601(16), 3481–3497. https://doi.org/10.1113/JP284967

Peklaj, E., Rescic, N., Korousic Seljak, B., & Rotovnik Kozjek, N. (2022). Is RED-S in athletes just another face of malnutrition? Clin Nutr ESPEN, 48, 298–307. https://doi.org/10.1016/j.clnesp.2022.01.031

Peklaj, E., Rescic, N., Seljak, B. K., & Kozjek, N. R. (2024). Corrigendum to "Is RED-S in athletes just an-other face of malnutrition?" [Clin Nutr ESPEN 48 (2022) 298-307]. Clin Nutr ESPEN, 63, 190. https://doi.org/10.1016/j.clnesp.2024.06.032

Peters, M. D., Godfrey, C. M., Khalil, H., McInerney, P., Parker, D., & Soares, C. B. (2015). Guidance for conducting systematic scoping reviews. Int J Evid Based Healthc, 13(3), 141–146. https://doi.org/10.1097/XEB.0000000000000050

Pollock, D., Evans, C., Menghao Jia, R., Alexander, L., Pieper, D., Brandão de Moraes, É., Peters, M. D. J., Tricco, A. C., Khalil, H., Godfrey, C. M., Saran, A., Campbell, F., & Munn, Z. (2024). “How-to”: scop-ing review? [Article]. Journal of Clinical Epidemiology, 176, Article 111572. https://doi.org/10.1016/j.jclinepi.2024.111572

Pontzer, H. (2018). Energy Constraint as a Novel Mechanism Linking Exercise and Health. Physiology (Bethesda), 33(6), 384–393. https://doi.org/10.1152/physiol.00027.2018

Ros, F. E., Vaquero-Cristóbal, R., Marfell-Jones, M., Marfell-Jones, M., & Kinanthropometry, I. S. f. A. o. (2019). International Standars for Anthropometric Assessment, 20019. International Society for the Advancement of Kinanthropometry (ISAK).

Ross, R., Soni, S., & Houle, S. A. (2020). Negative Energy Balance Induced by Exercise or Diet: Effects on Visceral Adipose Tissue and Liver Fat. Nutrients, 12(4). https://doi.org/10.3390/nu12040891

Saidi, O., Souabni, M., Del Sordo, G. C., Maviel, C., Peyrel, P., Maso, F., Vercruyssen, F., & Duche, P. (2024). Association between Low Energy Availability (LEA) and Impaired Sleep Quality in Young Rug-by Players. Nutrients, 16(5). https://doi.org/10.3390/nu16050609

Sarin, H. V., Gudelj, I., Honkanen, J., Ihalainen, J. K., Vuorela, A., Lee, J. H., Jin, Z., Terwilliger, J. D., Isola, V., Ahtiainen, J. P., Hakkinen, K., Juric, J., Lauc, G., Kristiansson, K., Hulmi, J. J., & Perola, M. (2019). Molecular Pathways Mediating Immunosuppression in Response to Prolonged Intensive Physi-cal Training, Low-Energy Availability, and Intensive Weight Loss. Front Immunol, 10, 907. https://doi.org/10.3389/fimmu.2019.00907

Schaal, K., Tiollier, E., Le Meur, Y., Casazza, G., & Hausswirth, C. (2017). Elite synchronized swimmers display decreased energy availability during intensified training. Scand J Med Sci Sports, 27(9), 925–934. https://doi.org/10.1111/sms.12716

Schaal, K., VanLoan, M. D., Hausswirth, C., & Casazza, G. A. (2021). Decreased energy availability during training overload is associated with non-functional overreaching and suppressed ovarian func-tion in female runners. Appl Physiol Nutr Metab, 46(10), 1179–1188. https://doi.org/10.1139/apnm-2020-0880

Scheffer, J. H., Dunshea-Mooij, C. A. E., Armstrong, S., MacManus, C., & Kilding, A. E. (2023). Prevalence of low energy availability in 25 New Zealand elite female rowers - A cross sectional study. J Sci Med Sport, 26(12), 640–645. https://doi.org/10.1016/j.jsams.2023.09.016

Shepherd, J. A., Ng, B. K., Sommer, M. J., & Heymsfield, S. B. (2017). Body composition by DXA. Bone, 104, 101–105. https://doi.org/10.1016/j.bone.2017.06.010

Silva, M. G., & Silva, H. H. (2017). Comparison of body composition and nutrients' deficiencies between Portuguese rink-hockey players. Eur J Pediatr, 176(1), 41–50. https://doi.org/10.1007/s00431-016-2803-x

Silva, M. G., Silva, H. H., & Paiva, T. (2018). Sleep duration, body composition, dietary profile and eating behaviours among children and adolescents: a comparison between Portuguese acrobatic gymnasts. Eur J Pediatr, 177(6), 815–825. https://doi.org/10.1007/s00431-018-3124-z

Silva, M. R., & Paiva, T. (2015). Low energy availability and low body fat of female gymnasts before an international competition. Eur J Sport Sci, 15(7), 591–599. https://doi.org/10.1080/17461391.2014.969323

Silva, M. R., & Paiva, T. (2016). Poor precompetitive sleep habits, nutrients' deficiencies, inappropriate body composition and athletic performance in elite gymnasts. Eur J Sport Sci, 16(6), 726–735. https://doi.org/10.1080/17461391.2015.1103316

Sim, A., & Burns, S. F. (2021). Review: questionnaires as measures for low energy availability (LEA) and relative energy deficiency in sport (RED-S) in athletes. J Eat Disord, 9(1), 41. https://doi.org/10.1186/s40337-021-00396-7

Sim, A., Tan, H. Q., Ali, Y., & Burns, S. F. (2024). Original investigation: manipulating energy availability in male endurance runners: a randomised controlled trial. Appl Physiol Nutr Metab, 49(9), 1163–1174. https://doi.org/10.1139/apnm-2024-0037

Speakman, J. R., Yamada, Y., Sagayama, H., Berman, E. S. F., Ainslie, P. N., Andersen, L. F., Anderson, L. J., Arab, L., Baddou, I., Bedu-Addo, K., Blaak, E. E., Blanc, S., Bonomi, A. G., Bouten, C. V. C., Bovet, P., Buchowski, M. S., Butte, N. F., Camps, S., Close, G. L.,…group, I. D. d. (2021). A standard calcula-tion methodology for human doubly labeled water studies. Cell Rep Med, 2(2), 100203. https://doi.org/10.1016/j.xcrm.2021.100203

Stenqvist, T. B., Melin, A. K., & Torstveit, M. K. (2023). Relative Energy Deficiency in Sport (REDs) Indi-cators in Male Adolescent Endurance Athletes: A 3-Year Longitudinal Study. Nutrients, 15(24). https://doi.org/10.3390/nu15245086

Taguchi, M., Moto, K., Lee, S., Torii, S., & Hongu, N. (2020). Energy Intake Deficiency Promotes Bone Resorption and Energy Metabolism Suppression in Japanese Male Endurance Runners: A Pilot Study. Am J Mens Health, 14(1), 1557988320905251. https://doi.org/10.1177/1557988320905251

Tarnowski, C. A., Wardle, S. L., O'Leary, T. J., Gifford, R. M., Greeves, J. P., & Wallis, G. A. (2023). Meas-urement of Energy Intake Using the Principle of Energy Balance Overcomes a Critical Limita-tion in the Assessment of Energy Availability. Sports Med Open, 9(1), 16. https://doi.org/10.1186/s40798-023-00558-8

Tektunali Akman, C., Gonen Aydin, C., & Ersoy, G. (2024). The effect of nutrition education sessions on energy availability, body composition, eating attitude and sports nutrition knowledge in young female endurance athletes. Front Public Health, 12, 1289448. https://doi.org/10.3389/fpubh.2024.1289448

Torres-McGehee, T. M., Emerson, D. M., Pritchett, K., Moore, E. M., Smith, A. B., & Uriegas, N. A. (2021). Energy Availability With or Without Eating Disorder Risk in Collegiate Female Athletes and Per-forming Artists. J Athl Train, 56(9), 993–1002. https://doi.org/10.4085/JAT0502-20

Torstveit, M. K., Fahrenholtz, I., Stenqvist, T. B., Sylta, O., & Melin, A. (2018). Within-Day Energy Defi-ciency and Metabolic Perturbation in Male Endurance Athletes. Int J Sport Nutr Exerc Metab, 28(4), 419–427. https://doi.org/10.1123/ijsnem.2017-0337

Torstveit, M. K., Fahrenholtz, I. L., Lichtenstein, M. B., Stenqvist, T. B., & Melin, A. K. (2019). Exercise dependence, eating disorder symptoms and biomarkers of Relative Energy Deficiency in Sports (RED-S) among male endurance athletes. BMJ Open Sport Exerc Med, 5(1), e000439. https://doi.org/10.1136/bmjsem-2018-000439

Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Hors-ley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C.,…Straus, S. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med, 169(7), 467–473. https://doi.org/10.7326/M18-0850

Uchizawa, A., Osumi, H., Zhang, S., Yajima, K., Funayama, A., Kondo, E., Suzuki, Y., Tanaka, Y., Park, I., Enomoto, Y., Omi, N., Tokuyama, K., & Sagayama, H. (2025). Energy expenditure and slow-wave sleep in runners: Focusing on reproductive function, chronic training, and sex. iScience, 28(2), 111717. https://doi.org/10.1016/j.isci.2024.111717

Uriegas, N. A., Emerson, D. M., Winkelmann, Z. K., Ortaglia, A., & Torres-McGehee, T. M. (2024). Exami-nation of Energy Needs and Low Energy Availability Among Historically Black College and Uni-versity Female Student-Athletes. Nutrients, 16(23). https://doi.org/10.3390/nu16234160

Villa, M., Villa-Vicente, J. G., Seco-Calvo, J., Mielgo-Ayuso, J., & Collado, P. S. (2021). Body Composition, Dietary Intake and the Risk of Low Energy Availability in Elite-Level Competitive Rhythmic Gymnasts. Nutrients, 13(6). https://doi.org/10.3390/nu13062083

Wade, G. N., & Jones, J. E. (2004). Neuroendocrinology of nutritional infertility. Am J Physiol Regul In-tegr Comp Physiol, 287(6), R1277–1296. https://doi.org/10.1152/ajpregu.00475.2004

Wasserfurth, P., Palmowski, J., Hahn, A., & Kruger, K. (2020). Reasons for and Consequences of Low Energy Availability in Female and Male Athletes: Social Environment, Adaptations, and Preven-tion. Sports Med Open, 6(1), 44. https://doi.org/10.1186/s40798-020-00275-6

Waters, D. L., Aguirre, L., Gurney, B., Sinacore, D. R., Fowler, K., Gregori, G., Armamento-Villareal, R., Qualls, C., & Villareal, D. T. (2022). Effect of Aerobic or Resistance Exercise, or Both, on Inter-muscular and Visceral Fat and Physical and Metabolic Function in Older Adults With Obesity While Dieting. J Gerontol A Biol Sci Med Sci, 77(1), 131–139. https://doi.org/10.1093/gerona/glab111

Westerterp, K. R. (2017). Control of energy expenditure in humans. Eur J Clin Nutr, 71(3), 340–344. https://doi.org/10.1038/ejcn.2016.237

Westerterp, K. R. (2018). Exercise, energy balance and body composition. Eur J Clin Nutr, 72(9), 1246–1250. https://doi.org/10.1038/s41430-018-0180-4

Willingham, B. D., Daou, M., VanArsdale, J., Thomas, M., & Saracino, P. G. (2024). Energy Availability in Female Collegiate Beach Volleyball Athletes. J Strength Cond Res, 38(11), 1941–1950. https://doi.org/10.1519/JSC.0000000000004884

Wood, K. L., Barrack, M. T., Gray, V. B., Cotter, J. A., Van Loan, M. D., Rauh, M. J., McGowan, R., & Nichols, J. F. (2021). Cognitive dietary restraint score is associated with lower energy, carbohydrate, fat, and grain intake among female adolescent endurance runners. Eat Behav, 40, 101460. https://doi.org/10.1016/j.eatbeh.2020.101460

Wright, H. H., Ford, R., & Botha, C. R. (2014). A desire for weight loss in season increases disordered eat-ing behaviour risk and energy deficiency in athletes [Article]. South African Journal of Clinical Nutrition, 27(3), 120–126. https://doi.org/10.1080/16070658.2014.11734500

Zabriskie, H. A., Currier, B. S., Harty, P. S., Stecker, R. A., Jagim, A. R., & Kerksick, C. M. (2019). Energy Status and Body Composition Across a Collegiate Women's Lacrosse Season. Nutrients, 11(2). https://doi.org/10.3390/nu11020470

Zamboni, F., Ferrari, P., Cazzoletti, L., Setti, A., Bertoldo, F., Dalle Carbonare, L. G., Danese, E., Tardivo, S., Crisafulli, E., & Ferrari, M. (2024). Bone Mineral Density in Mountain, Road Cyclists and Un-trained Controls: Exercise, Diet and Hormones. Res Q Exerc Sport, 95(2), 423–430. https://doi.org/10.1080/02701367.2023.2242417

Descargas

Publicado

2025-06-23

Cómo citar

Muñoz Aristizábal, M. A., & Vidarte claros, J. A. (2025). Baja disponibilidad energética en atletas y su relación con la composición corporal: revisión de alcance . Retos, 68, 1272–1296. https://doi.org/10.47197/retos.v68.115402

Número

Sección

Revisiones teóricas sistemáticas y/o metaanálisis