The effect of coffee consumption on the tnf-α level after submaximal exercise

Authors

DOI:

https://doi.org/10.47197/retos.v67.111530

Keywords:

TNF-α, Robusta Coffee, Submaximal Exercise, Anti-inflammatory

Abstract

Introduction: Exercise has become a lifestyle choice for many individuals seeking to maintain their health and reduce the risk of various diseases. However, exercising at a certain intensity requires significant energy expenditure and can lead to micro-damage in the muscles, which can be detected through several biomarkers, including levels of Tumor Necrosis Factor Alpha (TNF-α). This condition may adversely affect physical performance, leading some individuals to take supplements as a preventive measure. Additionally, post-workout caffeine consumption has gained popularity, particularly in the form of caffeinated drinks, in an effort to enhance physical fitness and productivity. Nevertheless, there is limited comprehensive research on the mechanisms by which caffeine affects post-exercise recovery.

Objective: This study aims to investigate changes in Tumor Necrosis Factor Alpha (TNF-α) levels following coffee consumption and submaximal exercise.

Methodology: This quantitative quasi-experimental study employed a single-blind design. Twenty adult men (ages 19–29) were divided into a control (CON) group and an experimental (EXP) group. The EXP group consumed Robusta coffee for five days before the exercise intervention, while the CON group received a placebo on the same days. All participants underwent submaximal exercise using the Young Men's Christian Association (YMCA) step test method. Two hours after this intervention, blood samples were collected for TNF-α measurement.

Results: TNF-α levels were lower in the intervention group (88.17 n/L) than in the control group (121.44 n/L), although the difference was not statistically significant.

Conclusions: Coffee consumption may help reduce TNF-α and regulate inflammation after submaximal exercise.

References

Aronoff, D. M., Carstens, J. K., Chen, G.-H., Toews, G. B., & Peters-Golden, M. (2006). Short communica-tion: differences between macrophages and dendritic cells in the Cyclic AMP-dependent regula-tion of Lipopolysaccharide-induced Cytokine and Chemokine Synthesis. Journal of Interferon & Cytokine Research, 26(11), 827–833. https://doi.org/10.1089/jir.2006.26.827

Barcelos, R. P., Lima, F. D., Carvalho, N. R., Bresciani, G., & Royes, L. F. (2020). Caffeine effects on sys-temic metabolism, oxidative-inflammatory pathways, and exercise performance. Nutrition Re-search, 80, 1–17. https://doi.org/10.1016/j.nutres.2020.05.005

Boswell-Smith, V., Spina, D., & Page, C. P. (2006). Phosphodiesterase inhibitors. British Journal of Pharmacology, 147(S1), S252–S257. https://doi.org/10.1038/SJ.BJP.0706495

Ermawati, T., Meilawaty, Z., Harmono, H., Kalimantan No, J., & Java, E. (2018). Inhibition activity of Robusta coffee beans polyphenol extract on the production of TNF-α neutrophil cells. Majalah Kedokteran Gigi Indonesia, 4(2), 114–119. https://doi.org/10.22146/majkedgiind.28352

Favier, A.-L., & Nikovics, K. (2023). Molecular and cellular mechanisms of inflammation and tissue re-generation. In Biomedicines (Vol. 11, Issue 5). https://doi.org/10.3390/biomedicines11051416

Fiani, B., Zhu, L., Musch, B. L., Briceno, S., Andel, R., Sadeq, N., & Ansari, A. Z. (2021). The neurophysiolo-gy of caffeine as a central nervous system stimulant and the resultant effects on cognitive func-tion. Cureus, 13(5), e15032. https://doi.org/10.7759/cureus.15032

Filip, A., Wilk, M., Krzysztofik, M., & Del Coso, J. (2020). Inconsistency in the ergogenic effect of caffeine in athletes who regularly consume caffeine: is it due to the disparity in the criteria that defines habitual caffeine intake?. Nutrients, 12(4). https://doi.org/10.3390/nu12041087

Fischer, E. F., Victor, B., Robinson, D., Farah, A., & Martin, P. R. (2019). Coffee consumption and health impacts: a brief history of changing conceptions. In A. Farah & A. Farah (Eds.), Coffee: Con-sumption and Health Implications (p. 0). The Royal Society of Chemistry. https://doi.org/10.1039/9781788015028-00001

Grgic, J., Schoenfeld, B. J., Davies, T. B., Lazinica, B., Krieger, J. W., & Pedisic, Z. (2018). Effect of re-sistance training frequency on gains in muscular strength: a systematic review and meta-analysis. Sports Medicine, 48(5), 1207–1220. https://doi.org/10.1007/s40279-018-0872-x

Howatson, G., & Van Someren, K. A. (2008). The prevention and treatment of exercise-induced muscle damage. Sports Medicine, 38(6), 483–503. https://doi.org/10.2165/00007256-200838060-00004

Jiménez, S. L., Díaz-Lara, J., Pareja-Galeano, H., & Del Coso, J. (2021). Caffeinated drinks and physical performance in sport: a systematic review. Nutrients, 13(9). https://doi.org/10.3390/nu13092944

Laake, J.-P. S., Stahl, D., Amiel, S. A., Petrak, F., Sherwood, R. A., Pickup, J. C., & Ismail, K. (2014). The as-sociation between depressive symptoms and systemic inflammation in people with type 2 dia-betes: findings from the South London Diabetes Study. Diabetes Care, 37(8), 2186–2192.

Lin, P., Welch, E. J., Gao, X.-P., Malik, A. B., & Ye, R. D. (2005). Lysophosphatidylcholine Modulates Neu-trophil oxidant production through elevation of Cyclic AMP1. The Journal of Immunology, 174(5), 2981–2989. https://doi.org/10.4049/jimmunol.174.5.2981

Loftfield, E., Freedman, N. D., Graubard, B. I., Guertin, K. A., Black, A., Huang, W. Y., Shebl, F. M., Mayne, S. T., & Sinha, R. (2015). Association of coffee consumption with overall and cause-specific mor-tality in a large US prospective cohort study. American Journal of Epidemiology, 182(12), 1010–1022. https://doi.org/10.1093/aje/kwv146

Loureiro, L. M. R., Dos Santos Neto, E., Molina, G. E., Amato, A. A., Arruda, S. F., Reis, C. E. G., & da Costa, T. H. M. (2021). Coffee increases post-exercise muscle glycogen recovery in endurance athletes: a randomized clinical trial. Nutrients, 13(10). https://doi.org/10.3390/nu13103335

Makiso, M. U., Tola, Y. B., Ogah, O., & Endale, F. L. (2024). Bioactive compounds in coffee and their role in lowering the risk of major public health consequences: A review. Food Science & Nutrition, 12(2), 734–764. https://doi.org/10.1002/fsn3.3848

Menzel, A., Samouda, H., Dohet, F., Loap, S., Ellulu, M. S., & Bohn, T. (2021). common and novel markers for measuring inflammation and oxidative stress ex vivo in research and clinical practice-which to use regarding disease outcomes?. Antioxidants (Basel, Switzerland), 10(3). https://doi.org/10.3390/antiox10030414

Murata, T., Tago, K., Miyata, K., Moriwaki, Y., Misawa, H., Kobata, K., Nakazawa, Y., Tamura, H., & Fu-nakoshi-Tago, M. (2023). Suppression of neuroinflammation by coffee component Pyrocate-chol via inhibition of NF-κB in Microglia. International Journal of Molecular Sciences, 25(1). https://doi.org/10.3390/IJMS25010316

Naulleau, C., Jeker, D., Pancrate, T., Claveau, P., Deshayes, T. A., Burke, L. M., & Goulet, E. D. B. (2022). Effect of pre-exercise caffeine intake on endurance performance and core temperature regula-tion during exercise in the heat: a systematic review with meta-analysis. In Sports medicine (Auckland, N.Z.) (Vol. 52, Issue 10, pp. 2431–2445). https://doi.org/10.1007/s40279-022-01692-1

O’Connor, E., Mündel, T., & Barnes, M. J. (2022). Nutritional compounds to improve post-exercise re-covery. In Nutrients (Vol. 14, Issue 23). https://doi.org/10.3390/nu14235069

Park, M. H., Lee, E. D., & Chae, W.-J. (2022). Macrophages and wnts in tissue injury and repair. Cells, 11(22). https://doi.org/10.3390/cells11223592

Peeling, P., Binnie, M. J., Goods, P. S. R., Sim, M., & Burke, L. M. (2018). Evidence-based supplements for the enhancement of athletic performance. International Journal of Sport Nutrition and Exercise Metabolism, 28(2), 178–187. https://doi.org/10.1123/ijsnem.2017-0343

Posadzki, P., Pieper, D., Bajpai, R., Makaruk, H., Könsgen, N., Neuhaus, A. L., & Semwal, M. (2020). Exer-cise/physical activity and health outcomes: an overview of Cochrane systematic reviews. BMC Public Health, 20(1), 1724. https://doi.org/10.1186/s12889-020-09855-3

Ribeiro, J. A., & Sebastião, A. M. (2010). Caffeine and adenosine. Journal of Alzheimer’s Disease : JAD, 20 Suppl 1, S3-15. https://doi.org/10.3233/JAD-2010-1379

Rodas, L., Martinez, S., Aguilo, A., & Tauler, P. (2020). Caffeine supplementation induces higher IL-6 and IL-10 plasma levels in response to a treadmill exercise test. Journal of the International Society of Sports Nutrition, 17(1), 47.

Stožer, A., Vodopivc, P., & Križančić Bombek, L. (2020). Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiological Re-search, 69(4), 565–598. https://doi.org/10.33549/physiolres.934371

Supit, I. A., Pangemanan, D. H. C., & Marunduh, S. R. (2015). Profil tumor necrosis factor (TNF-α) ber-dasarkan indeks massa tubuh (IMT) pada mahasiswa fakultas kedokteran UNSRAT angkatan 2014. EBiomedik, 3(2).

Tavares, L. P., Negreiros-Lima, G. L., Lima, K. M., E Silva, P. M. R., Pinho, V., Teixeira, M. M., & Sousa, L. P. (2020). Blame the signaling: Role of cAMP for the resolution of inflammation. Pharmacological Research, 159, 105030. https://doi.org/https://doi.org/10.1016/j.phrs.2020.105030

Ungvari, Z., & Kunutsor, S. K. (2024). Coffee consumption and cardiometabolic health: a comprehensive review of the evidence. GeroScience. https://doi.org/10.1007/s11357-024-01262-5

Usmani, D., Ganapathy, K., Patel, D., Saini, A., Gupta, J., & Dixit, S. (2023). The role of exercise in prevent-ing chronic diseases: current evidence and recommendations. Georgian Medical News, 339, 137–142.

Zampelas, A., Panagiotakos, D. B., Pitsavos, C., Chrysohoou, C., & Stefanadis, C. (2004). Associations be-tween coffee consumption and inflammatory markers in healthy persons: The ATTICA study. American Journal of Clinical Nutrition, 80(4), 862–867. https://doi.org/10.1093/ajcn/80.4.862

Downloads

Published

08-04-2025

Issue

Section

Original Research Article

How to Cite

Mujahidin, I., Darmawan, R., Salamy, M. F. A. S., Isna, N. M., Qorib, M. F., & Herawati, L. (2025). The effect of coffee consumption on the tnf-α level after submaximal exercise. Retos, 67, 116-122. https://doi.org/10.47197/retos.v67.111530