Uma revisão sistemática da literatura sobre a previsão do desempenho na natação: métodos, conjuntos de dados, técnicas e tendências de investigação

Autores

  • Ari Tri Fitrianto Universitas Islam Kalimantan Muhammad Arsyad Al Banjari https://orcid.org/0000-0002-0825-2128
  • Oddie Barnanda Rizky University of Bengkulu
  • Edi Rahmadi Universitas Lambung Mangkurat
  • Asary Ramadhan Universitas Lambung Mangkurat

DOI:

https://doi.org/10.47197/retos.v67.112197

Palavras-chave:

Previsão, Rede Neural Artificial, Desempenho na Natação, Método, Tendência

Resumo

Introdução: Prever o sucesso da natação em desportos de competição, principalmente os resultados de futuras competições olímpicas de natação.
Objectivo: Este artigo fornece uma revisão abrangente e sistemática da investigação sobre a previsão do desempenho na natação publicada entre 2014 e 2024.
Metodologia: A investigação sobre a previsão do desempenho na natação foi realizada através de uma Revisão Sistemática da Literatura (RSL). Além disso, para estabelecer os limites dos artigos de acordo com o tema de investigação, este estudo utilizou as diretrizes PRISMA para conduzir a revisão sistemática. O resultado da extração dos estudos selecionados foi a identificação e análise de 21 publicações científicas que descrevem os temas de investigação, conjuntos de dados, técnicas, métodos, avaliações e problemas nesta área. Resultados: A análise fornece uma explicação detalhada dos temas e tendências que centram os estudos na previsão do desempenho da natação, oferece referências a conjuntos de dados públicos e explica as técnicas e métodos utilizados pelos investigadores.
Discussão: O modelo matemático preditivo é uma técnica popular, pois integra variáveis ​​biológicas e biomecânicas complexas, proporcionando previsões precisas. Além disso, para melhorar a precisão e a interpretabilidade das previsões, é necessário utilizar abordagens híbridas que combinem modelos matemáticos com técnicas mais avançadas, como a aprendizagem automática e a inteligência artificial explicável (XAI).
Conclusões: A previsão do desempenho da natação é essencial para melhorar os programas de treino, orientar a seleção dos atletas e avaliar o seu progresso.

Referências

Abbott, S., Moulds, K., Salter, J., Romann, M., Edwards, L., & Cobley, S. (2020). Testing the application of corrective adjustment procedures for removal of relative age effects in female youth swimming. Journal of Sports Sciences, 38(10), 1077–1084. https://doi.org/10.1080/02640414.2020.1741956

Amara, S., Chortane, O. G., Negra, Y., Hammami, R., Khalifa, R., Chortane, S. G., & van den Tillaar, R. (2021). Relationship between swimming performance, biomechanical variables and the calculated predicted 1-rm push-up in competitive swimmers. International Journal of Environmental Research and Public Health, 18(21). https://doi.org/10.3390/ijerph182111395

Apriyano, B., Zainuddin, Z. A., Hashim, A. H. M. H., Sayyd, S. M., Mazlan, A. N., Wenando, F. A., Argantos, Ockta, Y., & Anisa, M. F. (2025). Endurance of leg muscle strength and endurance of arm muscle strength to the ability of swimming speed 200 meters breaststroke. Retos, 62, 327–334. https://doi.org/10.47197/retos.v62.109079

Armen, M., Neldi, H., Suud, A., & Alben, C. (2024). The differences effects of lunges vs. squats exercise programs on the swimming speed 50-meters butterfly style: a quasi-experimental study. 2041(2014), 1344–1350.

Banister, E. W., & Calvert, T. W. (1980). Planning for future performance: implications for long term training. Canadian Journal of Applied Sport Sciences. Journal Canadien Des Sciences Appliquees Au Sport, 5(3), 170–176. http://europepmc.org/abstract/MED/6778623

Born, D. P., Stöggl, T., Lorentzen, J., Romann, M., & Björklund, G. (2024). Predicting future stars: Probability and performance corridors for elite swimmers. Journal of Science and Medicine in Sport, 27(2), 113–118. https://doi.org/10.1016/j.jsams.2023.10.017

Busso, T., Denis, C., Bonnefoy, R., Geyssant, A., & Lacour, J. R. (1997). Modeling of adaptations to physical training by using a recursive least squares algorithm. Journal of Applied Physiology, 82(5), 1685–1693. https://doi.org/10.1152/jappl.1997.82.5.1685

Busso, T., Häkkinen, K., Pakarinen, A., Carasso, C., Lacour, J. R., Komi, P. V, & Kauhanen, H. (1990). A systems model of training responses and its relationship to hormonal responses in elite weight-lifters. European Journal of Applied Physiology and Occupational Physiology, 61(1), 48–54. https://doi.org/10.1007/BF00236693

Carvalho, D. D., Goethel, M. F., Silva, A. J., Vilas-Boas, J. P., Pyne, D. B., & Fernandes, R. J. (2024). Swimming Performance Interpreted through Explainable Artificial Intelligence (XAI)—Practical Tests and Training Variables Modelling. Applied Sciences (Switzerland), 14(12), 1–15. https://doi.org/10.3390/app14125218

Chatard, J. C., & Stewart, A. M. (2011). Training load and performance in swimming. World Book of Swimming: From Science to Performance, January 2011, 359–373.

Costa, M. J., Marinho, D. A., Reis, V. M., Silva, A. J., Marques, M. C., Bragada, J. A., & Barbosa, T. M. (2010). Tracking the performance of world-ranked swimmers. Journal of Sports Science and Medicine, 9(3), 411–417.

Crowley, E., Ng, K., Mujika, I., & Powell, C. (2022). Speeding up or Slowing Down? Analysis of Race Results in Elite-level Swimming from 2011-2019 to Predict Future Olympic Games Performances. Measurement in Physical Education and Exercise Science, 26(2), 130–140. https://doi.org/10.1080/1091367X.2021.1952592

de Anda Martín, I. O., Pérez, I. M., Mena, E. B., & Del Arco Paniagua, A. (2024). Impact of psychological and physiological factors on endurance performance prediction. Retos, 61, 774–784. https://doi.org/10.47197/retos.v61.106874

de Jesus, K., de Jesus, K., Ayala, H. V. H., dos Santos Coelho, L., Vilas-Boas, J. P., & Fernandes, R. J. P. (2019). Predicting centre of mass horizontal speed in low to severe swimming intensities with linear and non-linear models. Journal of Sports Sciences, 37(13), 1512–1520. https://doi.org/10.1080/02640414.2019.1574949

Demarie, S., Chirico, E., & Galvani, C. (2022). Prediction and Analysis of Tokyo Olympic Games Swimming Results: Impact of the COVID-19 Pandemic on Swimmers’ Performance. International Journal of Environmental Research and Public Health, 19(4). https://doi.org/10.3390/ijerph19042110

Demirkan, E., Özkadi, T., Alagöz, I., Çağlar, E. Ç., & Çamiçi, F. (2023). Age-related physical and performance changes in young swimmers: The comparison of predictive models in 50-meter swimming performance. Baltic Journal of Health and Physical Activity, 15(2). https://doi.org/10.29359/BJHPA.15.2.04

Donato, A. J., Tench, K., Glueck, D. H., Seals, D. R., Eskurza, I., & Tanaka, H. (2003). Declines in physiological functional capacity with age: A longitudinal study in peak swimming performance. Journal of Applied Physiology, 94(2), 764–769. https://doi.org/10.1152/japplphysiol.00438.2002

Dormehl, S. J., Robertson, S. J., Barker, A. R., & Williams, C. A. (2017). Confirming the Value of Swimming-Performance Models for Adolescents. International Journal of Sports Physiology and Performance, 12(9), 1177–1185. https://doi.org/10.1123/ijspp.2016-0506

Edelmann-Nusser, J., Hohmann, A., & Henneberg, B. (2002). Modeling and prediction of competitive performance in swimming upon neural networks. European Journal of Sport Science, 2(2), 1–10. https://doi.org/10.1080/17461390200072201

Espada, M. C., Santos, F. J., Conceição, A., Louro, H., Ferreira, C. C., Reis, J. F., Pessôa-Filho, D. M., & Pereira, A. (2022). The Effects of 12 Weeks In-Water Training in Stroke Kinematics, Dry-Land Power, and Swimming Sprints Performance in Master Swimmers. Journal of Men’s Health, 18(9). https://doi.org/10.31083/j.jomh1809186

Fitz-Clarke JR, Morton, R. H., & Banister, E. W. (1991). Optimizing athletic performance by influence curves. Journal of Thermal Biology, 71:11, 51–58. https://doi.org/https://doi.org/10.1152/jappl.1991.71.3.1151

Fone, L., & van den Tillaar, R. (2022). Effect of Different Types of Strength Training on Swimming Performance in Competitive Swimmers: A Systematic Review. Sports Medicine - Open, 8(1). https://doi.org/10.1186/s40798-022-00410-5

Guo, W., Soh, K. G., Zakaria, N. S., Hidayat Baharuldin, M. T., & Gao, Y. (2022). Effect of Resistance Training Methods and Intensity on the Adolescent Swimmer’s Performance: A Systematic Review. Frontiers in Public Health, 10(April), 1–10. https://doi.org/10.3389/fpubh.2022.840490

Hamidi Rad, M., Aminian, K., Gremeaux, V., Massé, F., & Dadashi, F. (2021). Swimming Phase-Based Performance Evaluation Using a Single IMU in Main Swimming Techniques. Frontiers in Bioengineering and Biotechnology, 9(December), 1–10. https://doi.org/10.3389/fbioe.2021.793302

Hohmann, A. (1992). Analysis of delayed training effects in the preparation of the West german water polo team for the 1988 Olympic Games. Biomechanics and Medicine in Swimming. Swimming Science VI, 213–218. https://open-archive.sport-iat.de/bms/6_213-217_Hohmann.pdf

Hołub, M., Stanula, A., Baron, J., Głyk, W., Rosemann, T., & Knechtle, B. (2021). Predicting breaststroke and butterfly stroke results in swimming based on Olympics history. Int. J. Environ. Res. Public Health, 18(12), 6621. https://doi.org/10.3390/ijerph18126621

Imbach, F., Perrey, S., Chailan, R., Meline, T., & Candau, R. (2022). Training load responses modelling and model generalisation in elite sports. Scientific Reports, 12(1), 1–14. https://doi.org/10.1038/s41598-022-05392-8

Kitchenham, B., & Charters, S. M. (2007). Guidelines for performing systematic literature reviews in software engineering. Technical Report, Ver. 2.3 EBSE Technical Report. EBSE, January 2007.

Lima, L. P., Pontes-Silva, A., Oliveira, I. P. de, Quaresma, F. R. P., & Maciel, E. da S. (2025). Mathematical model for predicting handgrip strength in Quilombola children and adolescents: a cross-sectional study. Retos, 62, 26–30. https://doi.org/10.47197/retos.v62.108681

Liu, C., Xu, B., Wan, K., Sun, Q., Wang, R., Feng, Y., Shao, H., Liu, T., & Wang, R. (2024). Improved prediction of swimming talent through random forest analysis of anthropometric and physiological phenotypes. Phenomics, 4(5), 465–472. https://doi.org/10.1007/s43657-024-00176-8

Lobato, C. H., de Lima Rocha, M., de Almeida-Neto, P. F., & de Araújo Tinôco Cabral, B. G. (2023). Influence of advancing biological maturation in months on muscle power and sport performance in young swimming athletes. Sport Sciences for Health, 19(2), 487–494. https://doi.org/10.1007/s11332-022-01026-8

Mabweazara, S. Z., Leach, L., & Andrews, B. S. (2017). Predicting swimming performance using state anxiety. South African Journal of Psychology, 47(1), 110–120. https://doi.org/10.1177/0081246316645060

Marinho, D. A., Ferreira, M. I., Barbosa, T. M., Vilaça-Alve, J., Costa, M. J., Ferraz, R., & Neiva, H. P. (2020). Energetic and biomechanical contributions for longitudinal performance in master swimmers. Journal of Functional Morphology and Kinesiology, 5(2). https://doi.org/10.3390/jfmk5020037

Mitchell, L. J. G., Rattray, B., Fowlie, J., Saunders, P. U., & Pyne, D. B. (2020). The impact of different training load quantification and modelling methodologies on performance predictions in elite swimmers. European Journal of Sport Science, 20(10), 1329–1338. https://doi.org/10.1080/17461391.2020.1719211

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., Antes, G., Atkins, D., Barbour, V., Barrowman, N., Berlin, J. A., Clark, J., Clarke, M., Cook, D., D’Amico, R., Deeks, J. J., Devereaux, P. J., Dickersin, K., Egger, M., Ernst, E., Gøtzsche, P. C., … Tugwell, P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7). https://doi.org/10.1371/journal.pmed.1000097

Morais, J. E., Barbosa, T. M., Forte, P., Bragada, J. A., Castro, F. A. d. S., & Marinho, D. A. (2023). Stability analysis and prediction of pacing in elite 1500 m freestyle male swimmers. Sports Biomechanics, 22(11), 1496–1513. https://doi.org/10.1080/14763141.2020.1810749

Morais, J. E., Barbosa, T. M., Forte, P., Silva, A. J., & Marinho, D. A. (2021). Young Swimmers’ Anthropometrics, Biomechanics, Energetics, and Efficiency as Underlying Performance Factors: A Systematic Narrative Review. Frontiers in Physiology, 12(September). https://doi.org/10.3389/fphys.2021.691919

Morais, J. E., Barbosa, T. M., Gonjo, T., & Marinho, D. A. (2023). Using Statistical Parametric Mapping as a statistical method for more detailed insights in swimming: a systematic review. Frontiers in Physiology, 14(June), 1–12. https://doi.org/10.3389/fphys.2023.1213151

Morais, J. E., Barbosa, T. M., Neiva, H. P., Marques, M. C., & Marinho, D. A. (2022). Young Swimmers’ Classification Based on Performance and Biomechanical Determinants: Determining Similarities Through Cluster Analysis. Motor Control, 26(3), 396–411. https://doi.org/10.1123/mc.2021-0126

Mujika, I., Pyne, D. B., Wu, P. P.-Y., Ng, K., Crowley, E., & Powell, C. (2023). Next-generation models for predicting winning times in elite swimming events: Updated predictions for the Paris 2024 Olympic Games. Int. J. Sports Physiol. Perform., 18(11), 1269–1274. https://doi.org/10.1123/ijspp.2023-0174

Nicol, E., Pearson, S., Saxby, D., Minahan, C., & Tor, E. (2022). Stroke Kinematics, Temporal Patterns, Neuromuscular Activity, Pacing and Kinetics in Elite Breaststroke Swimming: A Systematic Review. Sports Medicine - Open, 8(1). https://doi.org/10.1186/s40798-022-00467-2

Nugent, F., Comyns, T., Kearney, P., & Warrington, G. (2019). Ultra-Short Race-Pace Training (USRPT) In Swimming: Current Perspectives. Open Access Journal of Sports Medicine, 10(October), 133–144. https://doi.org/10.2147/OAJSM.S180598

Nurmukhanbetova, D., Gussakov, I., & Yermakhanova, A. (2023). The influence of the low-volume high-intensity method training on the indicators of speed and strength qualities of young high skill level swimmers. Retos, 50, 446–455. https://doi.org/10.47197/retos.v50.98492

Okoli, C., & Schabram, K. (2012). A Guide to Conducting a Systematic Literature Review of Information Systems Research. SSRN Electronic Journal, 10(2010). https://doi.org/10.2139/ssrn.1954824

Podrihalo, O., Podrigalo, L., Jagiełło, W., Iermakov, S., & Yermakova, T. (2021). Substantiation of methods for predicting success in artistic swimming. International Journal of Environmental Research and Public Health, 18(16). https://doi.org/10.3390/ijerph18168739

Post, A. K., Koning, R. H., Visscher, C., & Elferink-Gemser, M. T. (2022). The importance of reflection and evaluation processes in daily training sessions for progression toward elite level swimming performance. Psychology of Sport and Exercise, 61, 102219. https://doi.org/https://doi.org/10.1016/j.psychsport.2022.102219

Pyne, D. B., Trewin, C. B., & Hopkins, W. G. (2004). Progression and variability of competitive performance of Olympic swimmers. Journal of Sports Sciences, 22(7), 613–620. https://doi.org/10.1080/02640410310001655822

Rico-González, M., Pino-Ortega, J., Clemente, F. M., & Arcos, A. L. (2022). Guidelines for performing systematic reviews in sports science. Biology of Sport, 39(2), 463–471. https://doi.org/10.5114/BIOLSPORT.2022.106386

Sadewa, Y. R., Sumaryanto, S., Sumarjo, S., & Ika, K. Y. (2024). Relationship of muscle strength, power, and leg flexibility with the swim start of the butterfly style. Retos, 55, 163–169. https://doi.org/10.47197/retos.v55.103106

Santos, C. C., Fernandes, R. J., Marinho, D. A., & Costa, M. J. (2023). From Entry to Finals: Progression and Variability of Swimming Performance at the 2022 FINA World Championships. Journal of Sports Science and Medicine, July, 417–424. https://doi.org/10.52082/jssm.2023.417

Sridana, R., Tomoliyus, Sukamti, E. R., Prabowo, T. A., & Abrori, R. B. (2024). The Effect of Coaching Style on Performance of Athletes Through Anxiety as Mediating Variable in Adolescent Swimmers. Retos, 55, 241–248. https://doi.org/10.47197/RETOS.V55.103150

Staunton, C. A., Romann, M., Björklund, G., & Born, D.-P. (2024a). Diving into a pool of data: Using principal component analysis to optimize performance prediction in women’s short-course swimming. Journal of Sports Sciences, 42(6), 519–526. https://doi.org/10.1080/02640414.2024.2346670

Staunton, C. A., Romann, M., Björklund, G., & Born, D. P. (2024b). Diving into a pool of data: Using principal component analysis to optimize performance prediction in women’s short-course swimming. Journal of Sports Sciences, 42(6), 519–526. https://doi.org/10.1080/02640414.2024.2346670

Staunton, C. A., Romann, M., Björklund, G., & Born, D. P. (2024c). Streamlining performance prediction: data-driven KPIs in all swimming strokes. BMC Research Notes, 17(1), 1–7. https://doi.org/10.1186/s13104-024-06714-x

Sun, X., Davis, J., Schulte, O., & Liu, G. (2020). Cracking the Black Box: Distilling Deep Sports Analytics. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 3154–3162. https://doi.org/10.1145/3394486.3403367

Tomaszewski, M., Lukanova-Jakubowska, A., Majorczyk, E., & Dzierżanowski, Ł. (2024). From data to decision: Machine learning determination of aerobic and anaerobic thresholds in athletes. PLoS ONE, 19(8). https://doi.org/10.1371/journal.pone.0309427

Veiga, S., Cala, A., Mallo, J., & Navarro, E. (2013). A new procedure for race analysis in swimming based on individual distance measurements. Journal of Sports Sciences, 31(2), 159–165. https://doi.org/10.1080/02640414.2012.723130

Wilk, R., Fidos-Czuba, O., Rutkowski, Ł., Kozłowski, K., Wiśniewski, P., Maszczyk, A., Stanula, A., & Roczniok, R. (2015). Predicting competitive swimming performance. Central European Journal of Sport Sciences and Medicine |, 9(1), 105–112.

Wu, P. P.-Y., Garufi, L., Drovandi, C., Mengersen, K., Mitchell, L. J. G., Osborne, M. A., & Pyne, D. B. (2022). Bayesian prediction of winning times for elite swimming events. Journal of Sports Sciences, 40(1), 24–31. https://doi.org/10.1080/02640414.2021.1976485

Yuan, R., & Han, Y. (2022a). Factor Analysis and Regression Prediction Model of Swimmers’ Performance Structure Based on Mixed Genetic Neural Network. Computational Intelligence and Neuroscience, 2022(1), 2052975. https://doi.org/https://doi.org/10.1155/2022/2052975

Yuan, R., & Han, Y. (2022b). Factor Analysis and Regression Prediction Model of Swimmers’ Performance Structure Based on Mixed Genetic Neural Network. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/2052975

Zhao, H., Li, W., Gan, L., & Wang, S. (2023). Designing a prediction model for athlete’s sports performance using neural network. Soft Computing, 27(19), 14379–14395. https://doi.org/10.1007/s00500-023-09091-y

Zuozienė, I. J., & Poderys, J. (2018). Laboratory Assessments and Field Tests in Predicting Competitive Performance of Swimmers. Baltic Journal of Sport and Health Sciences, 3(86), 115–119. https://doi.org/10.33607/bjshs.v3i86.276

Downloads

Publicado

02-04-2025

Edição

Secção

Revisões teóricas sistemáticas e/ou metanálises

Como Citar

Tri Fitrianto, A., Barnanda Rizky, O., Rahmadi, E., & Ramadhan, A. (2025). Uma revisão sistemática da literatura sobre a previsão do desempenho na natação: métodos, conjuntos de dados, técnicas e tendências de investigação. Retos, 67, 482-497. https://doi.org/10.47197/retos.v67.112197