Análise de dados da concorrência: Usando técnicas de análise de séries temporais para prever os resultados da concorrência

Autores

DOI:

https://doi.org/10.47197/retos.v67.114138

Palavras-chave:

previsão de resultados, séries temporais, redes neurais, análise esportiva.

Resumo

Sports data analysis has evolved with the use of advanced time series techniques for predicting outcomes in competitions. The objective was to evaluate the effectiveness of ARIMA, recurrent neural networks and deep learning models in predicting outcomes of sports competitions, comparing their accuracy and ability to adapt to different contextual variables. The methodology was based on the analysis of historical data from sports competitions, applying time series models and machine learning techniques. Sports databases with information on team and player performance were used, evaluating the predictive capacity of the implemented models. The results indicated that LSTM neural networks performed better in predicting outcomes compared to traditional models. The inclusion of contextual variables, such as the physical condition of the players and the game environment, improved the accuracy of the predictions. In the discussion, the findings coincided with research highlighting the effectiveness of deep learning in sports data analysis. However, the need to further optimize the integration of multiple data sources to improve the accuracy of predictions was identified. It was concluded that the use of time series techniques represents a valuable tool in the prediction of sports outcomes, with applications in strategic decision-making and competitive performance analysis. It is recommended to continue exploring hybrid approaches and the use of real-time data to strengthen predictive accuracy in future studies.

Referências

Alaminos, A., y Alaminos, A. (2021). Ajuste funcional y exploración de patrones en series temporales. Limencop S. L

Andrade, F. (2023). Un modelo de series de tiempo ARIMA para pronosticar la variable generadora de ingresos por negociaciones de renta variable en el mercado de valores en Ecuador. Figempa, 16(2). https://doi.org/10.29166/revfig.v16i2.4496

Arana, C. (2021) Redes neuronales recurrentes: Análisis de los modelos especializados en datos secuen-ciales, Serie Documentos de Trabajo, No. 797, Universidad del Centro de Estudios Macroeco-nómicos de Argentina (UCEMA). https://www.econstor.eu/bitstream/10419/238422/1/797.pdf

Baldinelli, F. (2024). Tecnologías avanzadas de análisis de datos deportivos y su impacto en las apues-tas. Lecturas: Educación Física y Deportes, 28(310), 224-231. Recuperado de https://www.efdeportes.com/efdeportes/index.php/EFDeportes/article/view/7500 [Fecha de consulta: 15 de Febrero de 2025]

Bunker, R., Yeung, C., y Fujii, K. (2024). Machine Learning for Soccer Match Result Prediction. Recupe-rado de https://arxiv.org/abs/2403.07669

Chakwate, R., y Madhan, R. A. (2020). Analysing Long Short Term Memory Models for Cricket Match Outcome Prediction. Recuperado de https://arxiv.org/abs/2011.02122

Chinmay, D., Soudeep, D., y Rishideep, R. (2024). Real-time forecasting within soccer matches through a Bayesian lens. Journal of the Royal Statistical Society Series A: Statistics in Society, 187, pp. 513–540 https://doi.org/10.1093/jrsssa/qnad136

Choi, H., Kim, S., y Park, J. (2023). Deep learning for sports prediction: A comprehensive review of ap-plications and methodologies. Journal of Sports Analytics, 9(1), 45-62.

Divekar, C., Deb, S., y Roy, R. (2023). Real-time forecasting within soccer matches through a Bayesian lens. Recuperado de https://arxiv.org/abs/2303.12401

Fierro, A. (2020). Predicción de Series Temporales con Redes Neuronales. (Tesis de pregrado, Universi-dad Nacional de La Plata) https://sedici.unlp.edu.ar/bitstream/handle/10915/114857/Documento_completo.pdf-PDFA.pdf?sequence=1&isAllowed=y

Gupta, A. (2019). Time Series Modeling for Dream Team in Fantasy Premier League. Recuperado de https://arxiv.org/abs/1909.12938

Hannes, L., Hagen W., y Woll, A. (2020). Success factors in football: an analysis of the German Bun-desliga. International Journal of Performance Analysis in Sport, 20. https://www.tandfonline.com/doi/full/10.1080/24748668.2020.1726157

Hernández, R., Fernández, C., y Baptista, P. (2014). Metodología de la Investigación. McGraw-Hill.

Juan Llamas, M. del C. (2021). Modelización matemática para la predicción y prevención de lesiones deportivas (Mathematical modeling for prediction and prevention of sports injuries). Retos, 39, 681–685. https://doi.org/10.47197/retos.v0i39.81315

Lepschy, H.; Wäsche, H; y Woll, A. (2020). Success factors in football: an analysis of the German Bun-desliga. International Journal of Performance Analysis in Sport, 20(2). DOI:10.1080/24748668.2020.1726157

Megía, D. (2023). Análisis de la eficiencia y competitividad en las competiciones de fútbol profesional. Enfoque de organizadores y clubes profesionales. Cuadernos Económicos de ICE, 106. DOI: https://doi.org/10.32796/cice.2023.106.7706

Mendes, T., y Mendes, J. (2020). Comparing State-of-the-Art Neural Network Ensemble Methods in Soc-cer Predictions. In: Helic, D., Leitner, G., Stettinger, M., Felfernig, A., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2020. Lecture Notes in Computer Science, 12117. Springer, Cham. https://doi.org/10.1007/978-3-030-59491-6_13

Poveda, P. (2023). Aplicación de redes neuronales convolucionales al diagnóstico de la enfermedad de Alzheimer a partir de imágenes MRI. (Trabajo de maestría, Universidad Politécnica de Madrid) https://oa.upm.es/75167/1/TFM_PATRICIA_POVEDA_HERNANDEZ.pdf

Rocha E., Wallan, I., y Fisher, C. (2021). The influence of crosses, shots, corner kicks and defensive movements in the results of Premier League matches. Research, Society and Development, 10(16). https://rsdjournal.org/index.php/rsd/article/view/24072

Song, K., Gao, Y., y Shi, J. (2020). Making real-time predictions for NBA basketball games by combining the historical data and bookmaker’s betting line. Elsevier, 547. https://doi.org/10.1016/j.physa.2020.124411

Soto-Valero, C. (2018). Aplicación de métodos de aprendizaje automático en el análisis y la predicción de resultados deportivos. Recuperado de https://www.researchgate.net/publication/320719749_Aplicacion_de_metodos_de_aprendizaje_automatico_en_el_analisis_y_la_prediccion_de_resultados_deportivos

Soykot, A., Nzmul, M., Abdul, M., y Mumenin, M. (2023). A Comparative Study of Machine Learning and Deep Learning Techniques for Diabetes Prediction. BAUET Journal, 4(1). DOI:10.59321/BAUETJ.V4I1.9

Wang, Y., Zhang, X., y Li, H. (2024). Advances in machine learning models for sports analytics and per-formance forecasting. International Journal of Data Science, 12(2), 78-95.

Publicado

14-04-2025

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.

Como Citar

Llerena Carrera, R. A. (2025). Análise de dados da concorrência: Usando técnicas de análise de séries temporais para prever os resultados da concorrência. Retos, 67, 597-606. https://doi.org/10.47197/retos.v67.114138