Respuestas fisiológicas del entrenamiento de resistencia para aumentar los niveles de factor neurotrófico derivado del cerebro: una revisión sistemática

Autores/as

DOI:

https://doi.org/10.47197/retos.v68.115912

Palabras clave:

BDNF, Entrenamiento de resistencia, Demencia, Ejercicio físico

Resumen

Antecedentes: El deterioro de la función cognitiva es un sello distintivo de la demencia, una enfermedad neurológica progresiva. Una neurotrofina crucial para la neuroplasticidad, la cognición y la salud mental es el factor neurotrófico derivado del cerebro (BDNF). Actualmente, se ha demostrado que el ejercicio es un tratamiento no farmacológico eficaz para mejorar la salud general. Aún se desconoce si el ejercicio con pesas aumenta los niveles de BDNF.

Objetivo: El propósito de esta investigación fue determinar si el entrenamiento de resistencia aumentaba los niveles de BDNF en humanos.

Materiales y métodos: Para nuestra revisión sistemática, revisamos diversas bases de datos bibliográficas, como Scopus, Pubmed, Web of Science y Science Direct. Se realizó una búsqueda de artículos publicados entre 2015 y 2025 que abordaran el entrenamiento de resistencia y el BDNF. Se utilizaron las bases de datos Scopus, Web of Science, Pubmed y Science Direct para localizar un total de 707 publicaciones. Para esta revisión sistemática, se seleccionaron y examinaron diez artículos que cumplían los criterios de inclusión. Este estudio evaluó los procedimientos operativos estándar (PRISMA) utilizando los Elementos de Informe Preferidos para Revisiones Sistemáticas y Metaanálisis.

Results: Se ha demostrado que el entrenamiento de resistencia puede aumentar los niveles de BDNF en humanos.

Conclusiones: Se ha demostrado que el ejercicio físico aumenta significativamente los niveles de BDNF en humanos. El entrenamiento de resistencia tiene el potencial de ser un enfoque preventivo y terapéutico para la demencia al aumentar los niveles de BDNF, pero se necesitan más ensayos clínicos estandarizados para demostrarlo.

Citas

Apan, B. H., Bala, C., Cristina, A., & Buzoianu, A. D. (2020). The effects of exenatide on serum crp levels in patients with type 2 diabetes: A systematic review of randomized controlled trials. Romani-an Journal of Diabetes, Nutrition and Metabolic Diseases, 27(1), 66–72. https://doi.org/10.46389/rjd-2020-1011

Arazi, H., Babaei, P., Moghimi, M., & Asadi, A. (2021). Acute effects of strength and endurance exercise on serum BDNF and IGF-1 levels in older men. BMC Geriatrics, 21(1), 1–8. https://doi.org/10.1186/s12877-020-01937-6

Ayubi, N., Wibawa, J. C., & Callixte, C. (2024). THE MECHANISM OF PHYSICAL EXERCISES INCREASES HEAT SHOCK PROTEIN 70 (HSP70) (a systematic review). Medicni Perspektivi, 29(4), 14–22. https://doi.org/10.26641/2307-0404.2024.4.319168

Babyak, M., Blumenthal, J. A., Herman, S., Khatri, P., Doraiswamy, M., Moore, K., … Ranga Krishnan, K. (2000). Exercise treatment for major depression: Maintenance of therapeutic benefit at 10 months. Psychosomatic Medicine, 62(5), 633–638. https://doi.org/10.1097/00006842-200009000-00006

Bagheri, R., Rashidlamir, A., Motevalli, M. S., Elliott, B. T., Mehrabani, J., & Wong, A. (2019). Effects of upper-body, lower-body, or combined resistance training on the ratio of follistatin and myo-statin in middle-aged men. European Journal of Applied Physiology, 119(9), 1921–1931. https://doi.org/10.1007/s00421-019-04180-z

Banitalebi, E., Ghahfarrokhi, M. M., Negaresh, R., Kazemi, A., Faramarzi, M., Motl, R. W., & Zimmer, P. (2020). Exercise improves neurotrophins in multiple sclerosis independent of disability status. Multiple Sclerosis and Related Disorders, 43(October 2019), 102143. https://doi.org/10.1016/j.msard.2020.102143

Barakat, C., Pearson, J., Escalante, G., Campbell, B., & De Souza, E. O. (2020). Body Recomposition: Can Trained Individuals Build Muscle and Lose Fat at the Same Time? Strength and Conditioning Journal, 42(5), 7–21. https://doi.org/10.1519/SSC.0000000000000584

Castaño, L. A. A., Castillo de Lima, V., Barbieri, J. F., Lucena, E. G. P. de, Gáspari, A. F., Arai, H., … Uchida, M. C. (2022). Resistance Training Combined With Cognitive Training Increases Brain Derived Neurotrophic Factor and Improves Cognitive Function in Healthy Older Adults. Frontiers in Psychology, 13(October). https://doi.org/10.3389/fpsyg.2022.870561

Colonna, M., & Holtzmann, D. (2017). R E V I E W S E R I E S : G L I A A N D N E U R O D E G E N E R AT I O N Series Editors. The Journal of Clinical Investigation, 3(9), 33–35. Retrieved from https://doi.org/10.1172/JCI90606.

Cruz-Jentoft, A. J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., … Schols, J. (2019). Sarco-penia: Revised European consensus on definition and diagnosis. Age and Ageing, 48(1), 16–31. https://doi.org/10.1093/ageing/afy169

De Ninno, G., Giuffrè, G. M., Urbani, A., & Baroni, S. (2024). Current perspectives on Alzheimer’s disease fluid biomarkers and future challenges: a narrative review. Journal of Laboratory and Preci-sion Medicine, 9(January 2024). https://doi.org/10.21037/jlpm-24-1

Deus, L. A., Corrêa, H. de L., Neves, R. V. P., Reis, A. L., Honorato, F. S., Silva, V. L., … Rosa, T. S. (2021). Are resistance training-induced BDNF in hemodialysis patients associated with depressive symptoms, quality of life, antioxidant capacity, and muscle strength? An insight for the muscle–brain–renal axis. International Journal of Environmental Research and Public Health, 18(21), 1–13. https://doi.org/10.3390/ijerph182111299

Dev, K., Javed, A., Bai, P., Murlidhar, ., Memon, S., Alam, O., & Batool, Z. (2021). Prevalence of Falls and Fractures in Alzheimer’s Patients Compared to General Population. Cureus, 13(1), 10–13. https://doi.org/10.7759/cureus.12923

Eidukaitė, S., Masiulis, N., & Kvedaras, M. (2023). Exploring the Preliminary Effects of Resistance Training on Total Brain-Derived Neurotrophic Factor (BDNF) Levels in Elderly Individuals: A Pilot Study. Baltic Journal of Sport and Health Sciences, 2(129), 4–10. https://doi.org/10.33607/bjshs.v2i129.1377

Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., … Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the Na-tional Academy of Sciences of the United States of America, 108(7), 3017–3022. https://doi.org/10.1073/pnas.1015950108

Forti, L. N., Van Roie, E., Njemini, R., Coudyzer, W., Beyer, I., Delecluse, C., & Bautmans, I. (2015). Dose-and gender-specific effects of resistance training on circulating levels of brain derived neu-rotrophic factor (BDNF) in community-dwelling older adults. Experimental Gerontology, 70, 144–149. https://doi.org/10.1016/j.exger.2015.08.004

Gomez-Pinilla, F., & Hillman, C. (2013). The influence of exercise on cognitive abilities. Comprehensive Physiology, 3(1), 403–428. https://doi.org/10.1002/cphy.c110063

Gómez-Pinilla, F., Ying, Z., Roy, R. R., Molteni, R., & Reggie Edgerton, V. (2002). Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. Journal of Neurophysiol-ogy, 88(5), 2187–2195. https://doi.org/10.1152/jn.00152.2002

Jiang, N., Lv, J., Zhang, Y., Sun, X., Yao, C., Wang, Q., … Liu, X. (2023). Protective effects of ginsenosides Rg1 and Rb1 against cognitive impairment induced by simulated microgravity in rats. Frontiers in Pharmacology, 14(April), 1–11. https://doi.org/10.3389/fphar.2023.1167398

Jiménez-Maldonado, A., Antunes, B. M., Reyes, R. A., Rentería, I., Blanco-Salazar, A., Moncada-Jiménez, J., … Rossi, F. E. (2025). High-intensity circuit training improves cognitive performance inde-pendent of changes in sBDNF levels in active college students. Physiology and Behavior, 295(September 2024). https://doi.org/10.1016/j.physbeh.2025.114916

Kandola, A., Hendrikse, J., Lucassen, P. J., & Yücel, M. (2016). Aerobic Exercise as a Tool to Improve Hippocampal Plasticity and Function in Humans: Practical Implications for Mental Health Treatment. Frontiers in Human Neuroscience, 10(July), 1–25. https://doi.org/10.3389/fnhum.2016.00373

Karczewska-Kupczewska, M., Kowalska, I., Nikołajuk, A., Adamska, A., Zielińska, M., Kamińska, N., … Stra̧czkowski, M. (2012). Circulating brain-derived neurotrophic factor concentration is down-regulated by intralipid/heparin infusion or high- fatmeal in young healthymale subjects. Diabe-tes Care, 35(2), 358–362. https://doi.org/10.2337/dc11-1295

Kent, S. A., Spires-Jones, T. L., & Durrant, C. S. (2020). The physiological roles of tau and Aβ: implica-tions for Alzheimer’s disease pathology and therapeutics. In Acta Neuropathologica (Vol. 140). Springer Berlin Heidelberg. https://doi.org/10.1007/s00401-020-02196-w

Marston, K. J., Newton, M. J., Brown, B. M., Rainey-Smith, S. R., Bird, S., Martins, R. N., & Peiffer, J. J. (2017). Intense resistance exercise increases peripheral brain-derived neurotrophic factor. Journal of Science and Medicine in Sport, 20(10), 899–903. https://doi.org/10.1016/j.jsams.2017.03.015

Mazur-Bialy, A. I. (2021). Asprosin—a fasting-induced, glucogenic, and orexigenic adipokine as a new promising player. Will it be a new factor in the treatment of obesity, diabetes, or infertility? a review of the literature. Nutrients, 13(2), 1–10. https://doi.org/10.3390/nu13020620

Muñoz Ospina, B., & Cadavid-Ruiz, N. (2024). The effect of aerobic exercise on serum brain-derived neurotrophic factor (BDNF) and executive function in college students. Mental Health and Physical Activity, 26(January). https://doi.org/10.1016/j.mhpa.2024.100578

Ozkul, C., Guclu-Gunduz, A., Irkec, C., Fidan, I., Aydin, Y., Ozkan, T., & Yazici, G. (2018). Effect of com-bined exercise training on serum brain-derived neurotrophic factor, suppressors of cytokine signaling 1 and 3 in patients with multiple sclerosis. Journal of Neuroimmunology, 316(December 2017), 121–129. https://doi.org/10.1016/j.jneuroim.2018.01.002

Peng, S., Wuu, J., Mufson, E. J., & Fahnestock, M. (2005). Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. Journal of Neurochemistry, 93(6), 1412–1421. https://doi.org/10.1111/j.1471-4159.2005.03135.x

Phillips, S. M., & Winett, R. A. (2010). Uncomplicated resistance training and health-related outcomes: Evidence for a public health mandate. Current Sports Medicine Reports, 9(4), 208–213. https://doi.org/10.1249/JSR.0b013e3181e7da73

Pollán, M., Casla-Barrio, S., Alfaro, J., Esteban, C., Segui-Palmer, M. A., Lucia, A., & Martín, M. (2020). Exercise and cancer: a position statement from the Spanish Society of Medical Oncology. Clini-cal and Translational Oncology, 22(10), 1710–1729. https://doi.org/10.1007/s12094-020-02312-y

Prickett, C., Brennan, L., & Stolwyk, R. (2015). Examining the relationship between obesity and cogni-tive function: A systematic literature review. Obesity Research and Clinical Practice, 9(2), 93–113. https://doi.org/10.1016/j.orcp.2014.05.001

Pruchno, R., & Carr, D. (2017). Editorial: Successful aging 2.0: Resilience and beyond. Journals of Ger-ontology - Series B Psychological Sciences and Social Sciences, 72(2), 201–203. https://doi.org/10.1093/geronb/gbw214

Rasmussen, P., Brassard, P., Adser, H., Pedersen, M. V., Leick, L., Hart, E., … Pilegaard, H. (2009). Evi-dence for a release of brain-derived neurotrophic factor from the brain during exercise. Expe-rimental Physiology, 94(10), 1062–1069. https://doi.org/10.1113/expphysiol.2009.048512

Romero Garavito, A., Díaz Martínez, V., Juárez Cortés, E., Negrete Díaz, J. V., & Montilla Rodríguez, L. M. (2024). Impact of physical exercise on the regulation of brain-derived neurotrophic factor in people with neurodegenerative diseases. Frontiers in Neurology, 15(January), 1–16. https://doi.org/10.3389/fneur.2024.1505879

Setayesh, S., & Mohammad Rahimi, G. R. (2023). The impact of resistance training on brain-derived neurotrophic factor and depression among older adults aged 60 years or older: A systematic review and meta-analysis of randomized controlled trials. Geriatric Nursing, 54, 23–31. https://doi.org/10.1016/j.gerinurse.2023.08.022

Tsai, C. L., Pan, C. Y., Tseng, Y. T., Chen, F. C., Chang, Y. C., & Wang, T. C. (2021). Acute effects of high-intensity interval training and moderate-intensity continuous exercise on BDNF and irisin lev-els and neurocognitive performance in late middle-aged and older adults. Behavioural Brain Research, 413(1), 113472. https://doi.org/10.1016/j.bbr.2021.113472

Van Der Borght, K., Kóbor-Nyakas, D. É., Klauke, K., Eggen, B. J. L., Nyakas, C., Van Der Zee, E. A., & Meerlo, P. (2009). Physical exercise leads to rapid adaptations in hippocampal vasculature: Temporal dynamics and relationship to cell proliferation and neurogenesis. Hippocampus, 19(10), 928–936. https://doi.org/10.1002/hipo.20545

Ventriglia, M., Zanardini, R., Bonomini, C., Zanetti, O., Volpe, D., Pasqualetti, P., … Bocchio-Chiavetto, L. (2013). Serum brain-derived neurotrophic factor levels in different neurological diseases. Bio-Med Research International, 2013. https://doi.org/10.1155/2013/901082

Vivar, C., Peterson, B. D., & van Praag, H. (2016). Running rewires the neuronal network of adult-born dentate granule cells. NeuroImage, 131, 29–41. https://doi.org/10.1016/j.neuroimage.2015.11.031

Wang, W. H., He, G. P., Xiao, X. P., Gu, C., & Chen, H. Y. (2012). Relationship between brain-derived neu-rotrophic factor and cognitive function of obstructive sleep apnea/hypopnea syndrome pa-tients. Asian Pacific Journal of Tropical Medicine, 5(11), 906–910. https://doi.org/10.1016/S1995-7645(12)60169-2

Westcott, W. L. (2012). Resistance training is medicine: Effects of strength training on health. Current Sports Medicine Reports, 11(4), 209–216. https://doi.org/10.1249/JSR.0b013e31825dabb8

Wibawa, J. C., Febrianto, N., Fudin, M. S., Ockta, Y., & Festiawan, R. (2025). El mecanismo del ejercicio físico aumenta la glutatión peroxidasa como antioxidante endógeno : una revisión sistemática Authors How to cite in APA Keywords Resumen Palabras clave. 2025, 610–619.

Wibawa, J. C., Setiawan, A., Pratiwi, D. J., Yunitasari, I., Puspitaningsih, F., Dzikry, L. F., … Lesmana, H. S. (2024). Increased activity of the catalase enzyme after physical exercise as a signal for reduc-ing hydrogen peroxide (H2 O2): a systematic review. Fizjoterapia Polska, 2024(5), 232–238. https://doi.org/10.56984/8ZG020C7GDL

Wrann, C. D., White, J. P., Salogiannnis, J., Laznik-Bogoslavski, D., Wu, J., Ma, D., … Spiegelman, B. M. (2013). Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metabo-lism, 18(5), 649–659. https://doi.org/10.1016/j.cmet.2013.09.008

Zuo, C., Yin, Y., Zheng, Z., Mu, R., Liang, Y., Wang, S., & Ye, C. (2025). Unlocking the full potential of re-sistance training: a comparative analysis of low- and high-intensity effects on neurotrophic growth factors and homocysteine. Discover Applied Sciences, 7(2). https://doi.org/10.1007/s42452-025-06521-4

Descargas

Publicado

2025-06-07

Cómo citar

dany, danypramunoputra, Arianti, D., Rossa, M., Aji Prayitno, D., Erfarenata, F., & Cahyanto Wibawa, J. (2025). Respuestas fisiológicas del entrenamiento de resistencia para aumentar los niveles de factor neurotrófico derivado del cerebro: una revisión sistemática. Retos, 68, 1250–1261. https://doi.org/10.47197/retos.v68.115912

Número

Sección

Revisiones teóricas sistemáticas y/o metaanálisis