Physiological responses of resistance training in increasing brain-derived neurotrophic factor levels: a systematic review
DOI:
https://doi.org/10.47197/retos.v68.115912Keywords:
BDNF, resistance training, dementia, physical exerciseAbstract
Background: Cognitive function decline is a hallmark of dementia, a progressive neurological disease. One neurotrophin that is crucial to neuroplasticity, cognition, and mental health is brain-derived neurotrophic factor (BDNF). Exercise has currently been shown to be an effective non-pharmacological treatment for enhancing overall health. It is still unknown whether weight exercise raises BDNF levels.
Objective: The purpose of this research was to ascertain whether resistance training raised human BDNF levels. Materials and methods: We looked through a number of literature databases, including Scopus, Pubmed, Web of Science, and Science Direct, for our systematic review study. A search was conducted for articles published between 2015 and 2025 that discussed resistance training and BDNF. The databases Scopus, Web of Science, Pubmed, and Science Direct were used to locate 707 published publications in total. For this systematic review, ten papers that satisfied the inclusion criteria were chosen and examined. This study evaluated the standard operating procedures using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).
Results: It has been shown that resistance training can increase BDNF levels in humans.
Conclusions: Physical exercise has been shown to significantly increase BDNF levels in humans. Resistance training has the potential to be a preventive and therapeutic approach to dementia through increasing BDNF levels, but more standardized clinical trials are needed to prove this.
References
Apan, B. H., Bala, C., Cristina, A., & Buzoianu, A. D. (2020). The effects of exenatide on serum crp levels in patients with type 2 diabetes: A systematic review of randomized controlled trials. Romani-an Journal of Diabetes, Nutrition and Metabolic Diseases, 27(1), 66–72. https://doi.org/10.46389/rjd-2020-1011
Arazi, H., Babaei, P., Moghimi, M., & Asadi, A. (2021). Acute effects of strength and endurance exercise on serum BDNF and IGF-1 levels in older men. BMC Geriatrics, 21(1), 1–8. https://doi.org/10.1186/s12877-020-01937-6
Ayubi, N., Wibawa, J. C., & Callixte, C. (2024). THE MECHANISM OF PHYSICAL EXERCISES INCREASES HEAT SHOCK PROTEIN 70 (HSP70) (a systematic review). Medicni Perspektivi, 29(4), 14–22. https://doi.org/10.26641/2307-0404.2024.4.319168
Babyak, M., Blumenthal, J. A., Herman, S., Khatri, P., Doraiswamy, M., Moore, K., … Ranga Krishnan, K. (2000). Exercise treatment for major depression: Maintenance of therapeutic benefit at 10 months. Psychosomatic Medicine, 62(5), 633–638. https://doi.org/10.1097/00006842-200009000-00006
Bagheri, R., Rashidlamir, A., Motevalli, M. S., Elliott, B. T., Mehrabani, J., & Wong, A. (2019). Effects of upper-body, lower-body, or combined resistance training on the ratio of follistatin and myo-statin in middle-aged men. European Journal of Applied Physiology, 119(9), 1921–1931. https://doi.org/10.1007/s00421-019-04180-z
Banitalebi, E., Ghahfarrokhi, M. M., Negaresh, R., Kazemi, A., Faramarzi, M., Motl, R. W., & Zimmer, P. (2020). Exercise improves neurotrophins in multiple sclerosis independent of disability status. Multiple Sclerosis and Related Disorders, 43(October 2019), 102143. https://doi.org/10.1016/j.msard.2020.102143
Barakat, C., Pearson, J., Escalante, G., Campbell, B., & De Souza, E. O. (2020). Body Recomposition: Can Trained Individuals Build Muscle and Lose Fat at the Same Time? Strength and Conditioning Journal, 42(5), 7–21. https://doi.org/10.1519/SSC.0000000000000584
Castaño, L. A. A., Castillo de Lima, V., Barbieri, J. F., Lucena, E. G. P. de, Gáspari, A. F., Arai, H., … Uchida, M. C. (2022). Resistance Training Combined With Cognitive Training Increases Brain Derived Neurotrophic Factor and Improves Cognitive Function in Healthy Older Adults. Frontiers in Psychology, 13(October). https://doi.org/10.3389/fpsyg.2022.870561
Colonna, M., & Holtzmann, D. (2017). R E V I E W S E R I E S : G L I A A N D N E U R O D E G E N E R AT I O N Series Editors. The Journal of Clinical Investigation, 3(9), 33–35. Retrieved from https://doi.org/10.1172/JCI90606.
Cruz-Jentoft, A. J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., … Schols, J. (2019). Sarco-penia: Revised European consensus on definition and diagnosis. Age and Ageing, 48(1), 16–31. https://doi.org/10.1093/ageing/afy169
De Ninno, G., Giuffrè, G. M., Urbani, A., & Baroni, S. (2024). Current perspectives on Alzheimer’s disease fluid biomarkers and future challenges: a narrative review. Journal of Laboratory and Preci-sion Medicine, 9(January 2024). https://doi.org/10.21037/jlpm-24-1
Deus, L. A., Corrêa, H. de L., Neves, R. V. P., Reis, A. L., Honorato, F. S., Silva, V. L., … Rosa, T. S. (2021). Are resistance training-induced BDNF in hemodialysis patients associated with depressive symptoms, quality of life, antioxidant capacity, and muscle strength? An insight for the muscle–brain–renal axis. International Journal of Environmental Research and Public Health, 18(21), 1–13. https://doi.org/10.3390/ijerph182111299
Dev, K., Javed, A., Bai, P., Murlidhar, ., Memon, S., Alam, O., & Batool, Z. (2021). Prevalence of Falls and Fractures in Alzheimer’s Patients Compared to General Population. Cureus, 13(1), 10–13. https://doi.org/10.7759/cureus.12923
Eidukaitė, S., Masiulis, N., & Kvedaras, M. (2023). Exploring the Preliminary Effects of Resistance Training on Total Brain-Derived Neurotrophic Factor (BDNF) Levels in Elderly Individuals: A Pilot Study. Baltic Journal of Sport and Health Sciences, 2(129), 4–10. https://doi.org/10.33607/bjshs.v2i129.1377
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., … Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the Na-tional Academy of Sciences of the United States of America, 108(7), 3017–3022. https://doi.org/10.1073/pnas.1015950108
Forti, L. N., Van Roie, E., Njemini, R., Coudyzer, W., Beyer, I., Delecluse, C., & Bautmans, I. (2015). Dose-and gender-specific effects of resistance training on circulating levels of brain derived neu-rotrophic factor (BDNF) in community-dwelling older adults. Experimental Gerontology, 70, 144–149. https://doi.org/10.1016/j.exger.2015.08.004
Gomez-Pinilla, F., & Hillman, C. (2013). The influence of exercise on cognitive abilities. Comprehensive Physiology, 3(1), 403–428. https://doi.org/10.1002/cphy.c110063
Gómez-Pinilla, F., Ying, Z., Roy, R. R., Molteni, R., & Reggie Edgerton, V. (2002). Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. Journal of Neurophysiol-ogy, 88(5), 2187–2195. https://doi.org/10.1152/jn.00152.2002
Jiang, N., Lv, J., Zhang, Y., Sun, X., Yao, C., Wang, Q., … Liu, X. (2023). Protective effects of ginsenosides Rg1 and Rb1 against cognitive impairment induced by simulated microgravity in rats. Frontiers in Pharmacology, 14(April), 1–11. https://doi.org/10.3389/fphar.2023.1167398
Jiménez-Maldonado, A., Antunes, B. M., Reyes, R. A., Rentería, I., Blanco-Salazar, A., Moncada-Jiménez, J., … Rossi, F. E. (2025). High-intensity circuit training improves cognitive performance inde-pendent of changes in sBDNF levels in active college students. Physiology and Behavior, 295(September 2024). https://doi.org/10.1016/j.physbeh.2025.114916
Kandola, A., Hendrikse, J., Lucassen, P. J., & Yücel, M. (2016). Aerobic Exercise as a Tool to Improve Hippocampal Plasticity and Function in Humans: Practical Implications for Mental Health Treatment. Frontiers in Human Neuroscience, 10(July), 1–25. https://doi.org/10.3389/fnhum.2016.00373
Karczewska-Kupczewska, M., Kowalska, I., Nikołajuk, A., Adamska, A., Zielińska, M., Kamińska, N., … Stra̧czkowski, M. (2012). Circulating brain-derived neurotrophic factor concentration is down-regulated by intralipid/heparin infusion or high- fatmeal in young healthymale subjects. Diabe-tes Care, 35(2), 358–362. https://doi.org/10.2337/dc11-1295
Kent, S. A., Spires-Jones, T. L., & Durrant, C. S. (2020). The physiological roles of tau and Aβ: implica-tions for Alzheimer’s disease pathology and therapeutics. In Acta Neuropathologica (Vol. 140). Springer Berlin Heidelberg. https://doi.org/10.1007/s00401-020-02196-w
Marston, K. J., Newton, M. J., Brown, B. M., Rainey-Smith, S. R., Bird, S., Martins, R. N., & Peiffer, J. J. (2017). Intense resistance exercise increases peripheral brain-derived neurotrophic factor. Journal of Science and Medicine in Sport, 20(10), 899–903. https://doi.org/10.1016/j.jsams.2017.03.015
Mazur-Bialy, A. I. (2021). Asprosin—a fasting-induced, glucogenic, and orexigenic adipokine as a new promising player. Will it be a new factor in the treatment of obesity, diabetes, or infertility? a review of the literature. Nutrients, 13(2), 1–10. https://doi.org/10.3390/nu13020620
Muñoz Ospina, B., & Cadavid-Ruiz, N. (2024). The effect of aerobic exercise on serum brain-derived neurotrophic factor (BDNF) and executive function in college students. Mental Health and Physical Activity, 26(January). https://doi.org/10.1016/j.mhpa.2024.100578
Ozkul, C., Guclu-Gunduz, A., Irkec, C., Fidan, I., Aydin, Y., Ozkan, T., & Yazici, G. (2018). Effect of com-bined exercise training on serum brain-derived neurotrophic factor, suppressors of cytokine signaling 1 and 3 in patients with multiple sclerosis. Journal of Neuroimmunology, 316(December 2017), 121–129. https://doi.org/10.1016/j.jneuroim.2018.01.002
Peng, S., Wuu, J., Mufson, E. J., & Fahnestock, M. (2005). Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. Journal of Neurochemistry, 93(6), 1412–1421. https://doi.org/10.1111/j.1471-4159.2005.03135.x
Phillips, S. M., & Winett, R. A. (2010). Uncomplicated resistance training and health-related outcomes: Evidence for a public health mandate. Current Sports Medicine Reports, 9(4), 208–213. https://doi.org/10.1249/JSR.0b013e3181e7da73
Pollán, M., Casla-Barrio, S., Alfaro, J., Esteban, C., Segui-Palmer, M. A., Lucia, A., & Martín, M. (2020). Exercise and cancer: a position statement from the Spanish Society of Medical Oncology. Clini-cal and Translational Oncology, 22(10), 1710–1729. https://doi.org/10.1007/s12094-020-02312-y
Prickett, C., Brennan, L., & Stolwyk, R. (2015). Examining the relationship between obesity and cogni-tive function: A systematic literature review. Obesity Research and Clinical Practice, 9(2), 93–113. https://doi.org/10.1016/j.orcp.2014.05.001
Pruchno, R., & Carr, D. (2017). Editorial: Successful aging 2.0: Resilience and beyond. Journals of Ger-ontology - Series B Psychological Sciences and Social Sciences, 72(2), 201–203. https://doi.org/10.1093/geronb/gbw214
Rasmussen, P., Brassard, P., Adser, H., Pedersen, M. V., Leick, L., Hart, E., … Pilegaard, H. (2009). Evi-dence for a release of brain-derived neurotrophic factor from the brain during exercise. Expe-rimental Physiology, 94(10), 1062–1069. https://doi.org/10.1113/expphysiol.2009.048512
Romero Garavito, A., Díaz Martínez, V., Juárez Cortés, E., Negrete Díaz, J. V., & Montilla Rodríguez, L. M. (2024). Impact of physical exercise on the regulation of brain-derived neurotrophic factor in people with neurodegenerative diseases. Frontiers in Neurology, 15(January), 1–16. https://doi.org/10.3389/fneur.2024.1505879
Setayesh, S., & Mohammad Rahimi, G. R. (2023). The impact of resistance training on brain-derived neurotrophic factor and depression among older adults aged 60 years or older: A systematic review and meta-analysis of randomized controlled trials. Geriatric Nursing, 54, 23–31. https://doi.org/10.1016/j.gerinurse.2023.08.022
Tsai, C. L., Pan, C. Y., Tseng, Y. T., Chen, F. C., Chang, Y. C., & Wang, T. C. (2021). Acute effects of high-intensity interval training and moderate-intensity continuous exercise on BDNF and irisin lev-els and neurocognitive performance in late middle-aged and older adults. Behavioural Brain Research, 413(1), 113472. https://doi.org/10.1016/j.bbr.2021.113472
Van Der Borght, K., Kóbor-Nyakas, D. É., Klauke, K., Eggen, B. J. L., Nyakas, C., Van Der Zee, E. A., & Meerlo, P. (2009). Physical exercise leads to rapid adaptations in hippocampal vasculature: Temporal dynamics and relationship to cell proliferation and neurogenesis. Hippocampus, 19(10), 928–936. https://doi.org/10.1002/hipo.20545
Ventriglia, M., Zanardini, R., Bonomini, C., Zanetti, O., Volpe, D., Pasqualetti, P., … Bocchio-Chiavetto, L. (2013). Serum brain-derived neurotrophic factor levels in different neurological diseases. Bio-Med Research International, 2013. https://doi.org/10.1155/2013/901082
Vivar, C., Peterson, B. D., & van Praag, H. (2016). Running rewires the neuronal network of adult-born dentate granule cells. NeuroImage, 131, 29–41. https://doi.org/10.1016/j.neuroimage.2015.11.031
Wang, W. H., He, G. P., Xiao, X. P., Gu, C., & Chen, H. Y. (2012). Relationship between brain-derived neu-rotrophic factor and cognitive function of obstructive sleep apnea/hypopnea syndrome pa-tients. Asian Pacific Journal of Tropical Medicine, 5(11), 906–910. https://doi.org/10.1016/S1995-7645(12)60169-2
Westcott, W. L. (2012). Resistance training is medicine: Effects of strength training on health. Current Sports Medicine Reports, 11(4), 209–216. https://doi.org/10.1249/JSR.0b013e31825dabb8
Wibawa, J. C., Febrianto, N., Fudin, M. S., Ockta, Y., & Festiawan, R. (2025). El mecanismo del ejercicio físico aumenta la glutatión peroxidasa como antioxidante endógeno : una revisión sistemática Authors How to cite in APA Keywords Resumen Palabras clave. 2025, 610–619.
Wibawa, J. C., Setiawan, A., Pratiwi, D. J., Yunitasari, I., Puspitaningsih, F., Dzikry, L. F., … Lesmana, H. S. (2024). Increased activity of the catalase enzyme after physical exercise as a signal for reduc-ing hydrogen peroxide (H2 O2): a systematic review. Fizjoterapia Polska, 2024(5), 232–238. https://doi.org/10.56984/8ZG020C7GDL
Wrann, C. D., White, J. P., Salogiannnis, J., Laznik-Bogoslavski, D., Wu, J., Ma, D., … Spiegelman, B. M. (2013). Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metabo-lism, 18(5), 649–659. https://doi.org/10.1016/j.cmet.2013.09.008
Zuo, C., Yin, Y., Zheng, Z., Mu, R., Liang, Y., Wang, S., & Ye, C. (2025). Unlocking the full potential of re-sistance training: a comparative analysis of low- and high-intensity effects on neurotrophic growth factors and homocysteine. Discover Applied Sciences, 7(2). https://doi.org/10.1007/s42452-025-06521-4
Downloads
Published
Issue
Section
License
Copyright (c) 2025 danypramunoputra dany, Devi Arianti, Melya Rossa, Dimas Aji Prayitno, Fransiskalina Erfarenata, Junian Cahyanto Wibawa

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.