Tanto o treinamento intervalado de alta intensidade quanto o treinamento contínuo de intensidade moderada diminuem os níveis de fetuína-A em ratos machos alimentados com uma dieta rica em gordura.
DOI:
https://doi.org/10.47197/retos.v56.104318Palavras-chave:
interval training, continuous training, obesity, insulin resistance, healthy lifestyleResumo
Antecedentes: A fetuína-A é uma hepatocina que está aumentada na obesidade, e uma dieta rica em gordura (DH) contribui para essa condição. A obesidade é caracterizada pelo aumento do índice de massa corporal (IMC) e está diretamente relacionada à resistência à insulina. Este estudo tem como objetivo analisar a diferença entre a eficácia do treinamento intervalado de alta intensidade (HIIT) e do treinamento contínuo de intensidade moderada (MICT) nos níveis de fetuína-A, insulina, glicemia de jejum (FBG).) e IMC em alimentados com HFD. ratos. Métodos: Vinte e quatro ratos Wistar machos foram divididos em quatro grupos: DC (dieta padrão), DH (somente DH), DH-IT (DH e HIIT) e DH-CT (DH e MICT). A DH consistia em uma dieta padrão com 2 ml adicionais/200 gramas de peso corporal de óleo de gordura de porco por dia. No grupo HFD-IT, a natação com carga de 9% do peso corporal, com períodos de descanso intermitentes e curtos, foi utilizada como exercício, enquanto o grupo HFD-CT recebeu carga de 6% do peso corporal e natação contínua. A natação ocorreu cinco dias por semana durante quatro semanas. Os níveis de fetuína-A e insulina foram medidos pelo método de ensaio imunoenzimático (ELISA), e os níveis de FBG foram medidos com um glicosímetro. Resultados: Os níveis de fetuína-A foram significativamente mais baixos nos grupos HFD-IT e HFD-CT em comparação com o grupo HFD (p<0,05). O grupo HFD-CT apresentou diminuição significativa nos níveis de GJ (p<0,05), mas não o grupo HFD-IT. Não houve diferenças no IMC e nos níveis de insulina entre os grupos após quatro semanas de tratamento (p>0,05). Conclusões: HIIT e MICT têm eficácia semelhante na redução dos níveis de fetuína-A. Além disso, o MICT também conseguiu reduzir os níveis de FBG.
Palavras-chave: treinamento intervalado, treinamento contínuo, dieta hiperlipídica, fetuína-A, insulina, estilo de vida saudável.
Referências
Ahmed, S. R., Bellamkonda, S., Zilbermint, M., Wang, J., & Kalyani, R. R. (2020). Effects of the low carbohydrate, high fat diet on glycemic control and body weight in patients with type 2 diabetes: experience from a community-based cohort. BMJ Open Diabetes Research & Care, 8(1), e000980. https://doi.org/10.1136/bmjdrc-2019-000980
Ahn, M. B., Kim, S. K., Kim, S. H., Cho, W. K., Suh, J. S., Cho, K. S., Suh, B. K., & Jung, M. H. (2021). Clinical significance of the fetuin-a-to-adiponectin ratio in obese children and adolescents with diabetes mellitus. Children, 8(1155). https://doi.org/10.3390/children8121155
Atakan, M. M., Li, Y., Koşar, Ş. N., Turnagöl, H. H., & Yan, X. (2021). Evidence-based effects of high-intensity interval training on exercise capacity and health: A review with historical perspective. International Journal of Environmental Research and Public Health, 18(13). https://doi.org/10.3390/ijerph18137201
Azhir, S., Alijani, E., Martinez-Huenchullan, S., Amni, H., Baker, J. S., & Farhani, F. (2022). Effects of Exercise Intensity on Soleus Muscle Myostatin and Follistatin Levels of Hyperglycaemic Rats (Efectos de la intensidad del ejercicio sobre la miostatina y folistatina del músculo sóleo de ratas hiperglicémicas). Retos, 44, 889–896. https://doi.org/10.47197/retos.v44i0.91770
Bhattacharya, S., Kundu, R., Dasgupta, S., & Bhattacharya, S. (2012). Mechanism of Lipid Induced Insulin Resistance: An Overview. Endocrinology and Metabolism, 27(1), 12. https://doi.org/10.3803/enm.2012.27.1.12
Blue, M. N. M., Smith-ryan, A. E., Trexler, E. T., & Hirsch, K. R. (2018). The effects of high intensity interval training on muscle size and quality in overweight and obese adults. Journal of Science and Medicine in Sport, 21(2), 207–212. https://doi.org/10.1016/j.jsams.2017.06.001
Boutari, C., & Mantzoros, C. S. (2022). A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism: Clinical and Experimental, 133(155217). https://doi.org/10.1016/j.metabol.2022.155217
Boutcher, S. H. (2011). High-intensity intermittent exercise and fat loss. Journal of Obesity, 2011. https://doi.org/10.1155/2011/868305
D’Amuri, A., Sanz, J. M., Capatti, E., Vece, F. Di, Vaccari, F., Lazzer, S., Zuliani, G., Nora, E. D., & Passaro, A. (2021). Effectiveness of high intensity interval training for weight loss in adults with obesity : a randomised controlled non inferiority trial. BMJ Open Sport & Exercise Medicine, 1–10. https://doi.org/10.1136/bmjsem-2020-001021
da Silva, G. H. C., Marques, D. C. de S., Santos, I. C., de Oliveira, F. M., Marques, M. G. de S., Júnior, R. B. dos S., Pendić, L., & Branco, B. H. M. (2022). Effects of a multidisciplinary approach on the anthropometric and body composition responses of obese adolescents (Efectos de un abordaje multidisciplinario sobre las respuestas antropométricas y de composición corporal de adolescentes obesos). Retos, 2041(46), 323–329. https://doi.org/10.47197/retos.v46.93066
Devi, A. I., Rejeki, P. S., Argarini, R., Shakila, N., Yosnengsih, Y., Ilmi, S. B. Z., Karimullah, A., Ayubi, N., & Herawati, L. (2023). Response of TNF-α Levels and Blood Glucose Levels after Acute High-Intensity Intermittent Exercise in Overweight Women. Retos, 48, 101–105. https://doi.org/10.47197/retos.v48.94305
Ennequin, G., Sirvent, P., & Whitham, M. (2019). Role of exercise-induced hepatokines in metabolic disorders. American Journal of Physiology - Endocrinology and Metabolism, 317(1), E11–E24. https://doi.org/10.1152/ajpendo.00433.2018
Etienne, Q., Lebrun, V., Komuta, M., Navez, B., Thissen, J. P., Leclercq, I. A., & Lanthier, N. (2022). Fetuin-A in Activated Liver Macrophages Is a Key Feature of Non-Alcoholic Steatohepatitis. Metabolites, 12(7). https://doi.org/10.3390/metabo12070625
Fajardo, R. J., Karim, L., Calley, V. I., & Bouxsein, M. L. (2014). A review of rodent models of type 2 diabetic skeletal fragility. Journal of Bone and Mineral Research, 29(5), 1025–1040. https://doi.org/10.1002/jbmr.2210
Flanagan, A. M., Brown, J. L., Santiago, C. A., Aad, P. Y., Spicer, L. J., & Spicer, M. T. (2008). High-fat diets promote insulin resistance through cytokine gene expression in growing female rats. Journal of Nutritional Biochemistry, 19(8), 505–513. https://doi.org/10.1016/j.jnutbio.2007.06.005
Francis, U. A., Melford, U. E., Hope, K. O., Chikodili, A. M., Kennedy, C. O., Isaiah, O. A., Eghosa, E. I., & and, D. C. N. (2022). Obesity related alterations in kidney function and plasma cytokines: Impact of sibutramine and diet in male Wistar rats. African Journal of Pharmacy and Pharmacology, 16(10), 161–172. https://doi.org/10.5897/ajpp2022.5305
Gobatto, C. A., de Mello, M. A. R., Sibuya, C. Y., de Azevedo, J. R. M., dos Santos, L. A., & Kokubun, E. (2001). Maximal lactate steady state in rats submitted to swimming exercise. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 130(1), 21–27. https://doi.org/10.1016/s1095-6433(01)00362-2
Hall, G. Van. (2015). The Physiological Regulation of Skeletal Muscle Fatty Acid Supply and Oxidation During Moderate-Intensity Exercise. Sports Medicine, 45(1), 23–32. https://doi.org/10.1007/s40279-015-0394-8
Herawati, L., Lukitasari, L., Rimbun, R., Purwanto, B., & Sari, G. M. (2019). The combination of exercise and ascorbic acid decrease blood glucose level and tend to ameliorate pancreatic islets area on high carbohydrate diet rats. International Journal of Applied Pharmaceutics, 11(Special Issue 3), 20–24. https://doi.org/10.22159/ijap.2019.v11s3.M1019
Khabiri, P., Rahimi, M. R., Rashidi, I., & Nedaei, S. E. (2023). Impacts of an 8-week regimen of aged garlic extract and aerobic exercise on the levels of Fetuin-A and inflammatory markers in the liver and visceral fat tissue of obese male rats. Clinical Nutrition ESPEN, 58, 79–88. https://doi.org/10.1016/j.clnesp.2023.09.004
Kong, Z., Sun, S., Liu, M., & Shi, Q. (2016). Short-Term High-Intensity Interval Training on Body Composition and Blood Glucose in Overweight and Obese Young Women. Journal of Diabetes Research, 2016, 10–12. https://doi.org/10.1155/2016/4073618
Little, T. J., Feltrin, K. L., Horowitz, M., Meyer, J. H., Wishart, J., Chapman, I. M., & Feinle-Bisset, C. (2008). A high-fat diet raises fasting plasma CCK but does not affect upper gut motility, PYY, and ghrelin, or energy intake during CCK-8 infusion in lean men. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 294(1), 45–51. https://doi.org/10.1152/ajpregu.00597.2007
Liu, J., Zhu, L., & Su, Y. (2020). Comparative effectiveness of high-intensity interval training and moderate-intensity continuous training for cardiometabolic risk factors and cardiorespiratory fitness in childhood obesity: A meta-analysis of randomized controlled trials. Frontiers in Physiology, 11(April), 1–18. https://doi.org/10.3389/fphys.2020.00214
Liu, Z., Patil, I. Y., Jiang, T., Sancheti, H., Walsh, J. P., Stiles, B. L., Yin, F., & Cadenas, E. (2015). High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity. PLoS ONE, 10(5), 1–16. https://doi.org/10.1371/journal.pone.0128274
Lundsgaard, A. M., Holm, J. B., Sjøberg, K. A., Bojsen-Møller, K. N., Myrmel, L. S., Fjære, E., Jensen, B. A. H., Nicolaisen, T. S., Hingst, J. R., Hansen, S. L., Doll, S., Geyer, P. E., Deshmukh, A. S., Holst, J. J., Madsen, L., Kristiansen, K., Wojtaszewski, J. F. P., Richter, E. A., & Kiens, B. (2019). Mechanisms Preserving Insulin Action during High Dietary Fat Intake. Cell Metabolism, 29(1), 50–63. https://doi.org/10.1016/j.cmet.2018.08.022
Malin, S. K., Del Rincon, J. P., Huang, H., & Kirwan, J. P. (2014). Exercise-induced lowering of fetuin-A may increase hepatic insulin sensitivity. Medicine and Science in Sports and Exercise, 46(11), 2085–2090. https://doi.org/10.1249/MSS.0000000000000338
Maturana, F. M., Martus, P., Zipfel, S., & NIEß, A. M. (2021). Effectiveness of HIIE versus MICT in Improving Cardiometabolic Risk Factors in Health and Disease: A Meta-analysis. Medicine and Science in Sports and Exercise, 53(3), 559–573. https://doi.org/10.1249/MSS.0000000000002506
Meiliana, A., & Wijaya, A. (2009). Peroxisome Proliferator–Activated Receptors and The Metabolic Syndrome. The Indonesian Biomedical Journal, 1(1), 4. https://doi.org/10.18585/inabj.v1i1.79
Miller, L. J., Harikumar, K. G., Wootten, D., & Sexton, P. M. (2021). Roles of Cholecystokinin in the Nutritional Continuum. Physiology and Potential Therapeutics. Frontiers in Endocrinology, 12(June), 1–7. https://doi.org/10.3389/fendo.2021.684656
Petridou, A., Siopi, A., & Mougios, V. (2019). Exercise in the management of obesity. Metabolism: Clinical and Experimental, 92, 163–169. https://doi.org/10.1016/j.metabol.2018.10.009
Rahayu, F. K., Dwiningsih, S. R., Sa’adi, A., & Herawati, L. (2021). Effects of different intensities of exercise on folliculogenesis in mice: Which is better? Clinical and Experimental Reproductive Medicine, 48(1), 43–49. https://doi.org/10.5653/cerm.2020.03937
Ramírez-Vélez, R., García-Hermoso, A., Hackney, A. C., & Izquierdo, M. (2019). Effects of exercise training on Fetuin-a in obese, type 2 diabetes and cardiovascular disease in adults and elderly: A systematic review and Meta-analysis. Lipids in Health and Disease, 18(1), 1–11. https://doi.org/10.1186/s12944-019-0962-2
Rejeki, P. S., Pranoto, A., Rahmanto, I., Izzatunnisa, N., Yosika, G. F., Hernaningsih, Y., Wungu, C. D. K., & Halim, S. (2023). The Positive Effect of Four-Week Combined Aerobic–Resistance Training on Body Composition and Adipokine Levels in Obese Females. Sports, 11(4), 1–13. https://doi.org/10.3390/sports11040090
Riddell, M. C., Pooni, R., Yavelberg, L., Li, Z., Kollman, C., Brown, R. E., Li, A., & Aronson, R. (2019). Reproducibility in the cardiometabolic responses to high-intensity interval exercise in adults with type 1 diabetes. Diabetes Research and Clinical Practice, 148, 137–143. https://doi.org/10.1016/j.diabres.2019.01.003
Rising, R., & Lifshitz, F. (2006). Energy expenditures & physical activity in rats with chronic suboptimal nutrition. Nutrition and Metabolism, 3(11), 1–9. https://doi.org/10.1186/1743-7075-3-11
Riyono, A., Tinduh, D., Othman, Z., & Herawati, L. (2022). Moderate intensity continuous and interval training affect visceral fat and insulin resistance model in female rat exposed high calorie diet. Comparative Exercise Physiology, 15(5), 403–411. DOI 10.3920/CEP220013
Robinson, E., Durrer, C., Simtchouk, S., Jung, M. E., Bourne, J. E., Voth, E., Little, J. P., & Short-term, L. J. P. (2015). Short-term high-intensity interval and moderate-intensity continuous training reduce leukocyte TLR4 in inactive adults at elevated risk of type 2 diabetes. Journal of Applied Physiology, 119(5), 508–516. https://doi.org/10.1152/japplphysiol.00334.2015
Rohmansyah, N. A., Praja, R. K., Phanpheng, Y., & Hiruntrakul, A. (2023). High-Intensity Interval Training Versus Moderate-Intensity Continuous Training for Improving Physical Health in Elderly Women. Inquiry, 60, 1–13. https://doi.org/10.1177/00469580231172870
Ruslan, S., Ilias, N. F., Azidin, R. M. F. R., Omar, M., Ghani, R. A., & Ismail, H. (2022). Effect of high intensity interval training and moderate intensity continuous training on blood pressure and blood glucose among T2DM patients. Journal of Physical Education and Sport, 22(10), 2334–2339. https://doi.org/10.7752/jpes.2022.10297
Saberi, S., Askaripour, M., Khaksari, M., Amin Rajizadeh, M., Abbas Bejeshk, M., Akhbari, M., Jafari, E., & Khoramipour, K. (2024). Exercise training improves diabetic renal injury by reducing fetuin-A, oxidative stress and inflammation in type 2 diabetic rats. Heliyon, 10(6), e27749. https://doi.org/10.1016/j.heliyon.2024.e27749
Schjerve, I. E., Tyldum, G. A., Tjønna, A. E., Stølen, T., Loennechen, J. P., Hansen, H. E. M., Haram, P. M., Heinrich, G., Bye, A., Najjar, S. M., Smith, G. L., Slørdahl, S. A., Kemi, O. J., & Wisløff, U. (2008). Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clinical Science, 115(9), 283–293. https://doi.org/10.1042/CS20070332
Singh, M., Sharma, P. K., Garg, V. K., Mondal, S. C., Singh, A. K., & Kumar, N. (2012). Role of fetuin-A in atherosclerosis associated with diabetic patients. Journal of Pharmacy and Pharmacology, 64(12), 1703–1708. https://doi.org/10.1111/j.2042-7158.2012.01561.x
Syamsudin, F., Qurnianingsih, E., Kinanti, R. G., Vigriawan, G. E., Putri, E. A. C., Rif’at Fawaid As’ad, M., Callixte, C., & Herawati, L. (2023). Short Term HIIT increase VO2max, but can’t decrease Free Fatty Acids in Women Sedentary Lifestyle. Retos, 50, 380–386. https://doi.org/10.47197/retos.v50.99573
Tjønna, A. E., Lee, S. J., Rognmo, Ø., Stølen, T. O., Bye, A., Haram, P. M., Loennechen, J. P., Al-Share, Q. Y., Skogvoll, E., Slørdahl, S. A., Kemi, O. J., Najjar, S. M., & Wisløff, U. (2008). Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: A pilot study. Circulation, 118(4), 346–354. https://doi.org/10.1161/CIRCULATIONAHA.108.772822
Vigriawan, G. E., Putri, E. A. C., Rejeki, P. S., Qurnianingsih, E., Kinanti, R. G., Mohamed, M. N. A., & Herawati, L. (2022). High-intensity interval training improves physical performance without C-reactive protein (CRP) level alteration in overweight sedentary women. Journal of Physical Education and Sport, 22(2), 442–447. https://doi.org/10.7752/jpes.2022.02055
Wewege, M., Berg, R. Van Den, Ward, R. E., & Keech, A. (2017). The effects of high-intensity interval training vs . moderate-intensity continuous training on body composition in overweight and obese adults : a systematic review and meta-analysis. Obesity Reviews, 18(June), 635–646. https://doi.org/10.1111/obr.12532
Wharton, S., Lau, D. C. W., Vallis, M., Sharma, A. M., Biertho, L., Campbell-Scherer, D., Adamo, K., Alberga, A., Bell, R., Boulé, N., Boyling, E., Brown, J., Calam, B., Clarke, C., Crowshoe, L., Divalentino, D., Forhan, M., Freedhoff, Y., Gagner, M., … Wicklum, S. (2020). Obesity in adults: A clinical practice guideline. Canadian Medical Association Journal, 192(31), E875–E891. https://doi.org/10.1503/cmaj.191707
Widianingsih, W., Salamah, N., & Maulida, F. Q. (2009). The effects of ethanolic extract of green algae (ulva lactuca l.) on blood cholesterol levels in male rats induced by a high fat diet. Jurnal Kedokteran Dan Kesehatan Indonesia, 7(5), 181–186. https://doi.org/10.20885/jkki.vol7.iss5.art3
World Health Organization. (2022). Obesity in the WHO Region. https://cdn.who.int/media/docs/librariesprovider2/euro-health-topics/food-safety/europeanobesityreport-2022-fs-(1).pdf?sfvrsn=fcf36c2c_5&download=true
Yang, Z., Mi, J., Wang, Y., Xue, L., Liu, J., Fan, M., Zhang, D., Wang, L., Qian, H., & Li, Y. (2021). Effects of low-carbohydrate diet and ketogenic diet on glucose and lipid metabolism in type 2 diabetic mice. Nutrition, 89, 111230. https://doi.org/10.1016/j.nut.2021.111230
Zanetti, M. M., Lima e Silva, L. de, Sena, M. A. de B., Neves, E. B., Ferreira, P. F., Keese, F., Nunes, R. A. M., & Fortes, M. D. S. R. (2022). Correlation between anthropometric parameters and cardiometabolic risk in military (Correlación entre parámetros antropométricos y riesgo cadiometabólico en militares). Retos, 44, 1099–1103. https://doi.org/10.47197/retos.v44i0.91559
Zhang, S. F., Zhang, Y., Li, B., & Chen, N. (2018). Physical inactivity induces the atrophy of skeletal muscle of rats through activating AMPK/FoxO3 signal pathway. European Review for Medical and Pharmacological Sciences, 22(1), 199–209. https://doi.org/10.26355/eurrev-201801-14118
Downloads
Publicado
Edição
Secção
Licença
Direitos de Autor (c) 2024 Retos

Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-SemDerivações 4.0.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e assegurar a revista o direito de ser a primeira publicação da obra como licenciado sob a Licença Creative Commons Attribution que permite que outros para compartilhar o trabalho com o crédito de autoria do trabalho e publicação inicial nesta revista.
- Os autores podem estabelecer acordos adicionais separados para a distribuição não-exclusiva da versão do trabalho publicado na revista (por exemplo, a um repositório institucional, ou publicá-lo em um livro), com reconhecimento de autoria e publicação inicial nesta revista.
- É permitido e os autores são incentivados a divulgar o seu trabalho por via electrónica (por exemplo, em repositórios institucionais ou no seu próprio site), antes e durante o processo de envio, pois pode gerar alterações produtivas, bem como a uma intimação mais Cedo e mais do trabalho publicado (Veja O Efeito do Acesso Livre) (em Inglês).
Esta revista é a "política de acesso aberto" de Boai (1), apoiando os direitos dos usuários de "ler, baixar, copiar, distribuir, imprimir, pesquisar, ou link para os textos completos dos artigos". (1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess