Phenolic content, antioxidant activity, and tyrosinase inhibitor potential for both skin and physical health: test of extract, skin content and content of Garcinia Cowa fruit
DOI:
https://doi.org/10.47197/retos.v62.108965Keywords:
Medicinal plant, extract, antioxidant, physical activityAbstract
Skin aging leads to reduced structural integrity and reduced skin function. Medicinal plant extracts that have antioxidant properties and are able to inhibit tyrosinase have become a trend in various uses for anti-aging. One of the commonly used plants in traditional medicine that grows in many Asian countries is garcinia cowa. Currently, no one has studied the fruit from two different aspects, namely for the skin and to help in physical improvement. The purpose of this study is to test the phenolic content, antioxidants, and tyrosinase inhibition activity of the extract from the skin and pulp of garcinia cowa as well as its effectiveness on the physical ability and function of the skin. The stages carried out start from the collection of garcina cowa fruits, the determination of total phenolic levels, the determination of antioxidant activity, and the determination of tyrosinase inhibition activity. The total phenolic content was determined by the folin-ciocalteu method. The phenolic content of garcinia cowa fruit peel extract is 17.789 mg of gallic acid equivalent extract (GAE)/g, while the meat extract is 12.078 mg GAE/g extract. Furthermore, the flesh of garcinia cowa showed weak antioxidant activity with an IC50 value of 490.2 μg/mL, but the fruit peel extract showed moderate antioxidant activity at 243.3 μg/mL. The skin of garcinia cowa fruit shows tyrosinase inhibition activity in vitro, which is more significant than the pulp. Garcinia cowa peel and pulp extracts both contain phenolic compounds and show the antioxidant activity, but it was found that the fruit peel extract has a higher content. This means that with its antioxidant content, it can ward off free radicals, prevent cell damage, and reduce the risk of chronic diseases. The combination of phenolic content, antioxidant activity, and tyrosinase inhibitor potential provides significant benefits for skin health and overall physical health.
References
Abate, M., Pagano, C., Masullo, M., Citro, M., Pisanti, S., Piacente, S., & Bifulco, M. (2022). Mangostanin, a xanthone derived from Garcinia mangostana fruit, exerts protective and reparative effects on oxidative damage in human keratinocytes. Pharmaceuticals, 15(1), 84. https://doi.org/10.3390/ph15010084
Ahmed, I. A., Mikail, M. A., Zamakshshari, N., & Abdullah, A.-S. H. (2020). Natural anti-aging skincare: role and potential. Biogerontology, 21, 293–310.
Alimuddin, A., Nazri, S. B. M., Liza, L., Pebriyani, D., & Muchlis, A. P. (2024). Physical education and sport essential as transversality and body integration in the learning process: A systematic review. Retos: Nuevas Tendencias En Educación Física, Deporte y Recreación, 58, 20–27. https://doi.org/10.47197/retos.v58.106061
Angami, T., Wangchu, L., Debnath, P., Sarma, P., Singh, B., Singh, A. K., Singh, S., Hazarika, B. N., Singh, M. C., & Aochen, C. (2021). Garcinia L.: a gold mine of future therapeutics. Genetic Resources and Crop Evolution, 68, 11–24.
Anugrah, S. M., Kusnanik, N. W., Wahjuni, E. S., Muhammad, H. N., Sulistyarto, S., Purwanto, B., Resmana, D., Juniarsyah, A. D., Ayubi, N., & Sari, E. (2024). Herbal Supplements That Have the Potential to Accelerate Recovery of Exercise-Induced Muscle Damage: Systematic Review. Retos: Nuevas Tendencias En Educación Física, Deporte y Recreación, 51, 840–848.
Ayaz, A., Zaman, W., Radák, Z., & Gu, Y. (2024). Harmony in Motion: Unraveling the Nexus of Sports, Plant-Based Nutrition, and Antioxidants for Peak Performance. Antioxidants, 13(4), 437. https://doi.org/10.3390/antiox13040437
Biswas, S. (2017). Determination of total flavonoid content of different parts of Garcinia cowa. East West University.
Bouzid, M. A., Filaire, E., McCall, A., & Fabre, C. (2015). Radical oxygen species, exercise and aging: an update. Sports Medicine, 45, 1245–1261.
Canals-Garzón, C., Guisado-Barrilao, R., Martínez-García, D., Chirosa-Ríos, I. J., Jerez-Mayorga, D., & Guisado-Requena, I. M. (2022). Effect of antioxidant supplementation on markers of oxidative stress and muscle damage after strength exercise: a systematic review. International Journal of Environmental Research and Public Health, 19(3), 1803. https://doi.org/10.3390/ijerph19031803
Cardona, D. M. G., Landázuri, P., Zuluaga, C. F. A., & Cortés, B. R. (2022). Marcadores bioquímicos de estrés oxidativo en jugadoras universitarias de voleibol: Efecto del consumo de Passiflora edulis. Retos: Nuevas Tendencias En Educación Física, Deporte y Recreación, 43, 603–612.
Chaiyana, W., Charoensup, W., Sriyab, S., Punyoyai, C., & Neimkhum, W. (2021). Herbal extracts as potential antioxidant, anti‐aging, anti‐inflammatory, and whitening cosmeceutical ingredients. Chemistry & Biodiversity, 18(7), e2100245. https://doi.org/10.1002/cbdv.202100245
Chaudhary, P., Janmeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B., Calina, D., & Sharifi-Rad, J. (2023). Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Frontiers in Chemistry, 11, 1158198. https://doi.org/10.3389/fchem.2023.1158198
Chouni, A., & Paul, S. (2023). A comprehensive review of the phytochemical and pharmacological potential of an evergreen plant Garcinia cowa. Chemistry & Biodiversity, 20(2), e202200910. https://doi.org/10.1002/cbdv.202200910
de la Cruz Sánchez, E., Ortega, J. P., Conteras, M. I. M., Alonso, M. C., & Abad, J. R. R.-R. (2008). Micronutrientes antioxidantes y actividad física: evidencias de las necesidades de ingesta a partir de las nuevas tecnologías de evaluación y estudio del estrés oxidativo en el deporte. Retos: Nuevas Tendencias En Educación Física, Deporte y Recreación, 13, 11–14.
Dewi, I. P., Aldi, Y., Ismail, N. H., Hefni, D., Susanti, M., Putra, P. P., & Wahyuni, F. S. (2024). Comprehensive studies of the anti-inflammatory effect of tetraprenyltoluquinone, a quinone from Garcinia cowa Roxb. Journal of Ethnopharmacology, 320, 117381. https://doi.org/10.1016/j.jep.2023.117381
El Assar, M., Álvarez-Bustos, A., Sosa, P., Angulo, J., & Rodríguez-Mañas, L. (2022). Effect of physical activity/exercise on oxidative stress and inflammation in muscle and vascular aging. International Journal of Molecular Sciences, 23(15), 8713. https://doi.org/10.3390/ijms23158713
Engwa, G. A. (2018). Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases. Phytochemicals: Source of Antioxidants and Role in Disease Prevention. BoD–Books on Demand, 7, 49–74.http://dx.doi.org/10.5772/intechopen.76719
Espirito Santo, B. L. S. do, Santana, L. F., Kato Junior, W. H., de Araújo, F. de O., Bogo, D., Freitas, K. de C., Guimarães, R. de C. A., Hiane, P. A., Pott, A., & Filiú, W. F. de O. (2020). Medicinal potential of Garcinia species and their compounds. Molecules, 25(19), 4513. https://doi.org/10.3390/molecules25194513
Hameed, A., Hussain, S. A., Yang, J., Ijaz, M. U., Liu, Q., Suleria, H. A. R., & Song, Y. (2017). Antioxidants potential of the filamentous fungi (Mucor circinelloides). Nutrients, 9(10), 1101. https://doi.org/10.3390/nu9101101
Hassan, M., Shahzadi, S., & Kloczkowski, A. (2023). Tyrosinase inhibitors naturally present in plants and synthetic modifications of these natural products as anti-melanogenic agents: a review. Molecules, 28(1), 378. https://doi.org/10.3390/molecules28010378
Jhofi, M., Husni, E., & Hamidi, D. (2021). Anticancer and antioxidant activity of Asam Kandis (Garcinia cowa Roxb) leaf extract and fraction. 2nd International Conference on Contemporary Science and Clinical Pharmacy 2021 (ICCSCP 2021), 214–221. https://doi.org/10.2991/ahsr.k.211105.032
John, O. D., Brown, L., & Panchal, S. K. (2019). Garcinia fruits: Their potential to combat metabolic syndrome. Nutraceuticals and Natural Product Derivatives: Disease Prevention & Drug Discovery; Ullah, M., Ahmad, A., Eds, 39–80.
Kammeyer, A., & Luiten, R. M. (2015). Oxidation events and skin aging. Ageing Research Reviews, 21, 16–29. https://doi.org/10.1016/j.arr.2015.01.001
Kastella, F., Tarawan, V. M., Setiawan, I., Gunawan, D., Jasaputra, D. K., Goenawan, H., Gunadi, J. W., & Lesmana, R. (2024). Potential mechanisms of exercise in maintaining skin homeostasis disrupted by protein deficiency. World Academy of Sciences Journal, 6(3), 1–8.
Liza, L., Bafirman, B., Masrum, M., Alimuddin, A., Perdana, R. P., Wahyudi, A., Suganda, M. A., Suryadi, D., Prabowo, T. A., & Sacko, M. (2024). Modified warm-up model: A development study for football players post ankle injury. Retos: Nuevas Tendencias En Educación Física, Deporte y Recreación, 55, 710–717.
Logesh, R., Prasad, S. R., Chipurupalli, S., Robinson, N., & Mohankumar, S. K. (2023). Natural tyrosinase enzyme inhibitors: A path from melanin to melanoma and its reported pharmacological activities. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 188968. https://doi.org/10.1016/j.bbcan.2023.188968
López, A. M., Padilla, E. L., Amaya, H. M., Ortega, D. R., Aguilar, A. J. B., Navarro, P. E., & de la Rosa, F. J. B. (2022). Effect of post-training and post-match antioxidants on oxidative stress and inflammation in professional soccer players (Efecto de los antioxidantes post-entrenamiento y post-partido sobre el estrés oxidativo y la inflamación en jugadores profesionales d. Retos, 43, 996–1004.
Minerva, P., Nasra, E., & Yuniarti, E. (2023). Analysis of potentially anti-aging chemical compounds in asam kandis fruit peel extract (Garcinia cowa Roxb.). AIP Conference Proceedings, 2673(1).
Mohiuddin, A. K. (2019). Skin aging & modern age anti-aging strategies. Int J Clin Dermatol Res, 7(4), 209–240. https://scidoc.org/IJCDR.php
Mustafa, Y. F. (2024). Harmful free radicals in aging: A narrative review of their detrimental effects on health. Indian Journal of Clinical Biochemistry, 39(2), 154–167.
Nieman, D. C., & Wentz, L. M. (2019). The compelling link between physical activity and the body’s defense system. Journal of Sport and Health Science, 8(3), 201–217. https://doi.org/10.1016/j.jshs.2018.09.009
Panzella, L., & Napolitano, A. (2019). Natural and bioinspired phenolic compounds as tyrosinase inhibitors for the treatment of skin hyperpigmentation: Recent advances. Cosmetics, 6(4), 57. https://doi.org/10.3390/cosmetics6040057
Petracci, I., Gabbianelli, R., & Bordoni, L. (2020). The role of nutri (EPI) genomics in achieving the body’s full potential in physical activity. Antioxidants, 9(6), 498. https://doi.org/10.3390/antiox9060498
Phukhatmuen, P., Raksat, A., Laphookhieo, S., Charoensup, R., Duangyod, T., & Maneerat, W. (2020). Bioassay-guided isolation and identification of antidiabetic compounds from Garcinia cowa leaf extract. Heliyon, 6(4).
Rinnerthaler, M., Bischof, J., Streubel, M. K., Trost, A., & Richter, K. (2015). Oxidative stress in aging human skin. Biomolecules, 5(2), 545–589. https://doi.org/10.3390/biom5020545
Sellami, M., Slimeni, O., Pokrywka, A., Kuvačić, G., D Hayes, L., Milic, M., & Padulo, J. (2018). Herbal medicine for sports: a review. Journal of the International Society of Sports Nutrition, 15, 1–14.
Shanbhag, S., Nayak, A., Narayan, R., & Nayak, U. Y. (2019). Anti-aging and sunscreens: paradigm shift in cosmetics. Advanced Pharmaceutical Bulletin, 9(3), 348. https://doi.org/10.15171%2Fapb.2019.042
Sorg, H., Tilkorn, D. J., Hager, S., Hauser, J., & Mirastschijski, U. (2017). Skin wound healing: an update on the current knowledge and concepts. European Surgical Research, 58(1–2), 81–94. https://doi.org/10.1159/000454919
Tanabe, Y., Fujii, N., & Suzuki, K. (2021). Dietary supplementation for attenuating exercise-induced muscle damage and delayed-onset muscle soreness in humans. Nutrients, 14(1), 70. https://doi.org/10.3390/nu14010070
Tesoro, C., Cembalo, G., Guerrieri, A., Bianco, G., Acquavia, M. A., Di Capua, A., Lelario, F., & Ciriello, R. (2023). A Critical Overview of Enzyme-Based Electrochemical Biosensors for L-Dopa Detection in Biological Samples. Chemosensors, 11(10), 523. https://doi.org/10.3390/chemosensors11100523
Unsal, V., Cicek, M., & Sabancilar, İ. (2021). Toxicity of carbon tetrachloride, free radicals and role of antioxidants. Reviews on Environmental Health, 36(2), 279–295. https://doi.org/10.1515/reveh-2020-0048
Wanna, C., Boonman, N., & Phakpaknam, S. (2023). Antioxidant and antidiabetic properties of Garcinia cowa Roxb. extracts from leaves, fruit rind, and stem bark in different solvents. Plant Science Today, 10(3), 430–438. https://doi.org/10.14719/pst.2455
Zhang, Q., Jiang, Y., Deng, C., & Wang, J. (2024). Effects and potential mechanisms of exercise and physical activity on eye health and ocular diseases. Frontiers in Medicine, 11, 1353624. https://doi.org/10.3389/fmed.2024.1353624
Zuo, A.-R., Dong, H.-H., Yu, Y.-Y., Shu, Q.-L., Zheng, L.-X., Yu, X.-Y., & Cao, S.-W. (2018). The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups. Chinese Medicine, 13, 1–12.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Retos

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.
 
						 
							