The association of Whole and Segmental Body Composition and Anaerobic Performance in Crossfit® athletes: sex differences and performance prediction

Authors

  • Tomás Ponce-García Department of Human Physiology, Histology, Pathological Anatomy and Sports Physical Education, University of Málaga, 29071 Málaga https://orcid.org/0000-0003-1798-2189
  • Jerónimo García-Romero Department of Human Physiology, Histology, Pathological Anatomy and Sports Physical Education, University of Málaga, 29071 Málaga
  • Laura Carrasco-Fernández 1 Department of Human Physiology, Histology, Pathological Anatomy and Sports Physical Education, University of Málaga, 29071 Málaga, Spain
  • Alejandro Castillo-Dominguez Department of Nursing and Podiatry, University of Málaga, 29071, Spain. https://orcid.org/0000-0001-8524-1847
  • Javier Benítez-Porres Department of Human Physiology, Histology, Pathological Anatomy and Sports Physical Education, University of Málaga, 29071 Málaga https://orcid.org/0000-0001-7546-7965

DOI:

https://doi.org/10.47197/retos.v62.109115

Keywords:

Sports performance, anaerobic performance, lean body mass, athletes, high-intensity functional training

Abstract

The main purpose of this study was to establish the association between total and segmental body composition (BC) variables and anaerobic performance and to create optimal models that best predict such performance in CrossFit® (CF) athletes. Fifty athletes, 25 males and 25 females (age: 33.26 ± 6.81 years; body mass: 72.57 ± 12.17 kg; height: 169.55 ± 8.71 cm; BMI: 25.06 ± 2.31 kg·m−2) were recruited to participate and underwent BC analysis using dual-energy X-ray absorptiometry (DXA) and an all-out laboratory test on a cycle ergometer (Wingate) to determine their anaerobic performance. The results show a significant correlation between BC values   and performance, ranging from moderate (r = -0.34, p = 0.015) to near-perfect (r = 0.96, p < 0.01). Furthermore, the created performance prediction models exhibited predictive capacities ranging from 19% (p = 0.017) to 93% (p < 0.001). All prediction models were created using total or segmental lean mass variables, excluding others. The studied body composition and performance variables found significant differences between males and females. The findings demonstrate that body composition variables are crucial indicators of anaerobic performance in CF athletes. In this regard, it may be advisable for sports performance professionals to consider this information when monitoring athletes throughout the season or designing specific training programs. Similarly, the use of predictive equations could be a useful tool for estimating peak and mean power values.

References

Alsamir Tibana, R., Manuel Frade de Sousa, N., Prestes, J., da Cunha Nascimento, D., Ernesto, C., Falk Neto, J. H., Kennedy, M. D., & Azevedo Voltarelli, F. (2019). Is Perceived Exertion a Useful Indicator of the Metabolic and Cardiovascular Responses to a Metabolic Conditioning Session of Functional Fitness? Sports, 7(7), 161. https://doi.org/10.3390/sports7070161

Alvero-Cruz, J. R., Cabanas Armesilla, M. D., Herrero De Lucas, A., Martínez Riaza, L., Moreno Pascual, C., Porta Manzañido, J., Sillero Quintana, M., & Sirvent Belando, J. E. (2010). Protocolo de valoración de la composición corporal para el reconocimiento médico-deportivo. documento de consenso del grupo español de cineantropometría (grec)de la federación española de medicina del deporte (femede). Versión 2010. Archivos de Medicina Del Deporte, 26(139), 330–344. https://www.academia.edu/download/40094596/A_JJ_2010_Documento_de_consenso_330_139.pdf

Alvero-Cruz, J. R., Parent Mathias, V., Garcia Romero, J., Carrillo de Albornoz-Gil, M., Benítez-Porres, J., Ordoñez, F. J., Rosemann, T., Nikolaidis, P. T., & Knechtle, B. (2019). Prediction of Performance in a Short Trail Running Race: The Role of Body Composition. Frontiers in Physiology, 10(October), 1–7. https://doi.org/10.3389/fphys.2019.01306

Bar-Or, O. (1987). The Wingate Anaerobic Test An Update on Methodology, Reliability and Validity. Sports Medicine, 4(6), 381–394. https://doi.org/10.2165/00007256-198704060-00001

Bellar, D., Hatchett, A., Judge, L. W., Breaux, M. E., & Marcus, L. (2015). The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise. Biology of Sport, 32(4), 315–320. https://doi.org/10.5604/20831862.1174771

Ben Mansour, G., Kacem, A., Ishak, M., Grélot, L., & Ftaiti, F. (2021). The effect of body composition on strength and power in male and female students. BMC Sports Science, Medicine and Rehabilitation, 13(1), 1–11. https://doi.org/10.1186/s13102-021-00376-z

Beneke, R., Pollmann, C., Bleif, I., Leithäuser, R. M., & Hütler, H. (2002). How anaerobic is the wingate anaerobic test for humans? European Journal of Applied Physiology, 87(4–5), 388–392. https://doi.org/10.1007/s00421-002-0622-4

Butcher, S., Neyedly, T., Horvey, K., & Benko, C. (2015). Do physiological measures predict selected CrossFit® benchmark performance? Open Access Journal of Sports Medicine, 241. https://doi.org/10.2147/oajsm.s88265

Carreker, J. D., & Grosicki, G. J. (2020). Physiological Predictors of Performance on the CrossFit “Murph” Challenge. Sports, 8(7). https://doi.org/10.3390/sports8070092

Chiarlitti, N. A., Delisle-Houde, P., Reid, R. E. R., Kennedy, C., & Andersen, R. E. (2018). Importance of body composition in the national hockey league combine physiological assessments. Journal of Strength and Conditioning Research, 32(11), 3135–3142. https://doi.org/10.1519/JSC.0000000000002309

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences Second Edition (2nd ed.). Lawrence Erlbaum Associates. https://doi.org/https://doi.org/10.4324/9780203771587

Collins, K. S., Christensen, B. K., Orr, R. M., Dulla, J. M., Dawes, J. J., & Lockie, R. G. (2022). Analysis of Total and Segmental Body Composition Relative to Fitness Performance Measures in Law Enforcement Recruits. International Journal of Exercise Science, 15(4), 245–260.

Corredor-Serrano, Luisa. F., García-Chaves, Diego. C., Dávila Bernal, A., & Lay Villay, Wan. S. (2023). Composición corporal, fuerza explosiva y agilidad en jugadores de baloncesto profesional. Retos, 49, 189–195.

Czeck, M. A., Roelofs, E. J., Dietz, C., Bosch, T. A., & Dengel, D. R. (2021). Body Composition and On-Ice Skate Times for National Collegiate Athletic Association Division I Collegiate Male and Female Ice Hockey Athletes. Journal of Strength and Conditioning Research, 36(1), 187–192. www.nsca.com

Di Vincenzo, O., Marra, M., Di Gregorio, A., Caldara, A., De Lorenzo, A., & Scalfi, L. (2019). Body composition and physical fitness in elite water polo athletes. IcSPORTS 2019 - Proceedings of the 7th International Conference on Sport Sciences Research and Technology Support, 157–160. https://doi.org/10.5220/0008161401570160

Feito, Y., Heinrich, K., Butcher, S., & Poston, W. (2018). High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports, 6(3), 76. https://doi.org/10.3390/sports6030076

Franchini, E. (2023). Energy System Contributions during Olympic Combat Sports: A Narrative Review. In Metabolites (Vol. 13, Issue 2). MDPI. https://doi.org/10.3390/metabo13020297

Gacesa, J. Z., Popadic, ;, Barak, O. F. ;, & Grujic, N. G. (2009). Maximal anaerobic power test in athletes of different sport disciplines. Journal of Strength and Conditioning Research, 23, 751. https://doi.org/10.1519/JSC.0b013e3181a07a9a

García-Chaves, D. C., Corredor-Serrano, L. F., & Díaz Millán, S. (2023). Relación entre la fuerza explosiva, composición corporal, somatotipo y algunos parámetros de desempeño físico en jugadores de rugby sevens. Retos, 47, 103–109.

Guo S, S., Zeller, C., Chumlea, W. C., & Siervogel, R. M. (1999). Aging, body composition, and lifestyle: the Fels Longitudinal Study. The American Journal of Clinical Nutrition, 70(3), 405–411. https://doi.org/https://doi.org/10.1093/ajcn/70.3.405

Hofman, N., Orie, J., Hoozemans, M. J. M., Foster, C., & De Koning, J. J. (2017). Wingate test as a strong predictor of 1500-m performance in elite speed skaters. International Journal of Sports Physiology and Performance, 12(10). https://doi.org/10.1123/ijspp.2016-0427

Ishida, A., Travis, S. K., & Stone, M. H. (2021). Associations of body composition, maximum strength, power characteristics with sprinting, jumping, and intermittent endurance performance in male intercollegiate soccer players. Journal of Functional Morphology and Kinesiology, 6(1), 0–7. https://doi.org/10.3390/jfmk6010007

Kale, M., & Akdoğan, E. (2020). Relationships between body composition and anaerobic performance parameters in female handball players. Physical Education of Students, 24(5), 265–270. https://doi.org/10.15561/20755279.2020.0502

Kim, J., Cho, H. C., Jung, H. S., & Yoon, J. D. (2011). Influence of performance level on anaerobic power and body composition in elite male Judoists. Journal of Strength and Conditioning Research, 25(5), 1346–1354. https://doi.org/10.1519/JSC.0b013e3181d6d97c

Kirchengast, S. (2010). Gender Differences in Body Composition from Childhood to Old Age: An Evolutionary Point of View. Journal of Life Sciences, 2(1), 1–10. https://doi.org/10.1080/09751270.2010.11885146

Lara-Sánchez, A. J., Zagalaz, M. L., Berdejo-Del-Fresno, D., & Martínez-López, E. J. (2011). Jump peak power assessment through power prediction equations in different samples. Journal of Strength and Conditioning Research, 25(7), 1957–1962. https://doi.org/10.1519/JSC.0b013e3181e06ef8

Lockie, R. G., Carlock, B. N., Ruvalcaba, T. J., Dulla, J. M., Orr, R. M., Dawes, J. J., & McGuire, M. B. (2021). Skeletal Muscle Mass and Fat Mass Relationships With Physical Fitness Test Performance in Law Enforcement Recruits Before Academy. Journal of Strength and Conditioning Research, 35(5), 1287–1295. https://doi.org/10.1519/JSC.0000000000003918

Losnegard, T., Myklebust, H., & Hallén, J. (2012). Anaerobic capacity as a determinant of performance in sprint skiing. Medicine and Science in Sports and Exercise, 44(4), 673–681. https://doi.org/10.1249/MSS.0b013e3182388684

Lukaski, H., & Raymond-Pope, C. J. (2021). New Frontiers of Body Composition in Sport. In International Journal of Sports Medicine (Vol. 42, Issue 7, pp. 588–601). Georg Thieme Verlag. https://doi.org/10.1055/a-1373-5881

Maciejczyk, M., Wiecek, M., Szymura, J., Szygula, Z., & Brown, L. E. (2015). Influence of increased body mass and body composition on cycling anaerobic power. Journal of Strength and Conditioning Research, 29(1), 58–65. https://doi.org/10.1519/JSC.0000000000000727

Mangine, G. T., & McDougle, J. M. (2022). CrossFit® open performance is affected by the nature of past competition experiences. BMC Sports Science, Medicine and Rehabilitation, 14(1). https://doi.org/10.1186/s13102-022-00434-0

Mangine, G. T., McDougle, J. M., & Feito, Y. (2022). Relationships Between Body Composition and Performance in the High-Intensity Functional Training Workout “Fran” are Modulated by Competition Class and Percentile Rank. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.893771

Mangine, G. T., Tankersley, J. E., McDougle, J. M., Velazquez, N., Roberts, M. D., Esmat, T. A., VanDusseldorp, T. A., & Feito, Y. (2020). Predictors of CrossFit Open Performance. Sports, 8(7). https://doi.org/10.3390/sports8070102

Maud, P. J., & Shultz, B. B. (1986). Gender comparisons in anaerobic power and anaerobic capacity tests. British Journal of Sports Medicine, 20(2), 51–54. https://doi.org/10.1136/bjsm.20.2.51

Menargues-Ramírez, R., Sospedra, I., Holway, F., Hurtado-Sánchez, J. A., & Martínez-Sanz, J. M. (2022). Evaluation of Body Composition in CrossFit® Athletes and the Relation with Their Results in Official Training. International Journal of Environmental Research and Public Health, 19(17). https://doi.org/10.3390/ijerph191711003

Michalik, K., Szczepan, S., Markowski, M., & Zatoń, M. (2022). The Relationship Among Body Composition and Anaerobic Capacity and the Sport Level of Elite Male Motorcycle Speedway Riders. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.812958

Pearson, J. R., Wadhi, T., Rauch, J. T., Thiel, J., Andersen, J. C., O’Sullivan, J., & De Souza, E. O. (2019). The Relationship Between Body Composition with Peak Force and Anaerobic Power in Collegiate Baseball Players. Medicine & Science in Sports & Exercise, 51(6S), 913–913. https://doi.org/10.1249/01.mss.0000563237.71052.cd

Rudnev, S. G. (2020). Body composition in athletes: History, methodology and computational prospects. Advances in Intelligent Systems and Computing, 1028 AISC, 159–165. https://doi.org/10.1007/978-3-030-35048-2_19

Sanfilippo, J., Krueger, D., Heiderscheit, B., & Binkley, N. (2019). Dual-Energy X-Ray Absorptiometry Body Composition in NCAA Division I Athletes: Exploration of Mass Distribution. Sports Health, 11(5), 453–460. https://doi.org/10.1177/1941738119861572

Sauvé, B., Haugan, M., & Paulsen, G. (2024). Physical and Physiological Characteristics of Elite CrossFit Athletes. Sports, 12(6). https://doi.org/10.3390/sports12060162

Smith, J. C., & Hill, D. W. (1991). Contribution of energy systems during a Wingate power test. British Journal of Sports Medicine, 25(4), 196–199. https://doi.org/10.1136/bjsm.25.4.196

Stephenson, M. L., Smith, D. T., Heinbaugh, E. M., Moynes, R. C., Rockey, S. S., Thomas, J. J., & Dai, B. (2015). Total and Lower Extremity Lean Mass Percentage Positively Correlates with Jump Performance. Journal of Strength and Conditioning Research, 29(8), 2167–2175. https://doi.org/10.1519/JSC.0000000000000851

Stickley, C. D., Wages, J. J., Kimura, I. F., & Hetzler, R. K. (2012). Validation of a nonexercise prediction equation of anaerobic power. Journal of Strength and Conditioning Research, 26(11), 3067–3074. https://doi.org/10.1519/JSC.0b013e318243fa1f

Triki, M., Rebai, H., Abroug, T., Masmoudi, K., Fellmann, N., Zouari, N., & Tabka, Z. (2012). Comparative study of body composition and anaerobic performance between football and judo groups. Science and Sports, 27(5), 293–299. https://doi.org/10.1016/j.scispo.2011.07.004

Vargas, V. Z., De Lira, C. A. B., Vancini, R. L., Rayes, A. B. R., & Andrade, M. S. (2018). Fat mass is negatively associated with the physiological ability of tissue to consume oxygen. Motriz. Revista de Educacao Fisica, 24(4). https://doi.org/10.1590/S1980-6574201800040010

Wulan, S. N., Westerterp, K. R., & Plasqui, G. (2010). Ethnic differences in body composition and the associated metabolic profile: A comparative study between Asians and Caucasians. In Maturitas (Vol. 65, Issue 4, pp. 315–319). https://doi.org/10.1016/j.maturitas.2009.12.012

Zaras, N., Stasinaki, A.-N., Spiliopoulou, P., Hadjicharalambous, M., & Terzis, G. (2020). Lean Body Mass, Muscle Architecture, and Performance in Well-Trained Female Weightlifters. Sports, 8(67). https://doi.org/https://doi.org/10.3390/sports8050067

Zeitz, E. K., Cook, L. F., Dexheimer, J. D., Lemez, S., Leyva, W. D., Terbio, I. Y., Tran, J. R., & Jo, E. (2020). The Relationship between CrossFit® Performance and Laboratory-Based Measurements of Fitness. Sports, 8(8). https://doi.org/10.3390/sports8080112

Downloads

Published

01-01-2025

Issue

Section

Original Research Article

How to Cite

Ponce-García, T., García-Romero, J., Carrasco-Fernández, L., Castillo-Dominguez, A., & Benítez-Porres, J. (2025). The association of Whole and Segmental Body Composition and Anaerobic Performance in Crossfit® athletes: sex differences and performance prediction. Retos, 62, 543-552. https://doi.org/10.47197/retos.v62.109115