Uses of virtual reality in physical rehabilitation: a systematic review
DOI:
https://doi.org/10.47197/retos.v61.110044Keywords:
Virtual reality, Physical rehabilitation, Immersive technology, Motor function, Quality of lifeAbstract
Virtual reality (VR) has emerged as an innovative tool in the field of physical rehabilitation (PR), offering an immersive approach to improve motor function and quality of life in patients. However, the effectiveness of VR compared to other rehabilitation methods remains under study. The present study aims to analyze the uses of VR in PR through a systematic review of the available literature, assessing its impact on physical function and quality of life in patients. A systematic review was conducted following PRISMA guidelines. 21 studies published between 2014 and 2024 were selected, obtained from databases such as Scopus, ScienceDirect, and EBSCO. The studies included diverse populations requiring PR using immersive and non-immersive VR technologies. The studies showed that immersive VR provided greater improvements in balance and gait, especially in patients with Parkinson's, compared to non-immersive VR. Interventions with immersive VR also resulted in greater treatment adherence due to their interactive nature. However, studies present heterogeneity in terms of technologies and populations studied, which affects the generalizability of the results. VR has great potential to improve RF, but its effectiveness depends on factors such as the technology used and the condition of the patients. Larger-scale studies with controlled experimental designs are recommended to validate these findings and explore the impact of VR in home rehabilitation contexts.
References
Azab, A. R., Elnaggar, R. K., Aloraini, G. S., Aldhafian, O. R., Alshahrani, N. N., Kamel, F. H., Basha, M. A., & Morsy, W. E. (2024). Adolescents with hemophilic knee arthropathy can improve their gait characteristics, function-al ability, and physical activity level through kinect-based virtual reality: A randomized clinical trial. Heliyon, 10(7), e28113. https://doi.org/10.1016/j.heliyon.2024.e28113
Baldominos, A., Saez, Y., & Pozo, C. G. D. (2015). An Approach to Physical Rehabilitation Using State-of-the-art Virtu-al Reality and Motion Tracking Technologies. Procedia Computer Science, 64, 10-16. https://doi.org/10.1016/j.procs.2015.08.457
Basha, M. A., Aboelnour, N. H., Aly, S. M., & Kamel, F. A. H. (2022). Impact of Kinect-based virtual reality training on physical fitness and quality of life in severely burned children: A monocentric randomized controlled trial. Annals of Physical and Rehabilitation Medicine, 65(1), 101471. https://doi.org/10.1016/j.rehab.2020.101471
Brunner, M., Hemsley, B., Togher, L., & Palmer, S. (2017). Technology and its role in rehabilitation for people with cognitive-communication disability following a traumatic brain injury (TBI). Brain Injury, 31(8), 1028-1043. https://doi.org/10.1080/02699052.2017.1292429
Campo-Prieto, P., Tallón García, M., Rodríguez-Fuentes, G., & Cancela-Carral, J. M. (2024). Realidad virtual inmersi-va y ejercicio terapéutico como herramienta de rehabilitación pediátrica en Enfermedad de Castleman multicéntrica idiopática-TAFRO: Estudio de caso (Immersive virtual reality and therapeutic exercise as a pediatric rehabilitation tool in idiopathic mul-ticentric Castleman Disease-TAFRO: case study). Retos, 56, 959-965. https://doi.org/10.47197/retos.v56.104886
Elor, A., Powell, M., Mahmoodi, E., Teodorescu, M., & Kurniawan, S. (2022). Gaming Beyond the Novelty Effect of Immersive Virtual Reality for Physical Rehabilitation. IEEE Transactions on Games, 14(1), 107-115. https://doi.org/10.1109/TG.2021.3069445
Feng, H., Li, C., Liu, J., Wang, L., Ma, J., Li, G., Gan, L., Shang, X., & Wu, Z. (2019). Virtual Reality Rehabilitation Versus Conventional Physical Therapy for Improving Balance and Gait in Parkinson’s Disease Patients: A Randomized Controlled Trial. Medical Science Monitor, 25, 4186-4192. https://doi.org/10.12659/MSM.916455
Ferrero, L., Quiles, V., Ortiz, M., Iáñez, E., Gil-Agudo, Á., & Azorín, J. M. (2023). Brain-computer interface enhanced by virtual reality training for controlling a lower limb exoskeleton. iScience, 26(5), 106675. https://doi.org/10.1016/j.isci.2023.106675
Georgiev, D., Georgieva, I., Gong, Z., Nanjappan, V., & Georgiev, G. (2021). Virtual Reality for Neurorehabilitation and Cognitive Enhancement. Brain Sciences, 11(2), 221. https://doi.org/10.3390/brainsci11020221
Gomes, T. T., Schujmann, D. S., & Fu, C. (2019). Rehabilitation through virtual reality: Physical activity of patients admitted to the intensive care unit. Revista Brasileira de Terapia Intensiva, 31(4). https://doi.org/10.5935/0103-507X.20190078
Høeg, E. R., Andersen, N. B., Malmkjær, N., Vaaben, A. H., & Uth, J. (2023). Hospitalized older adults’ experiences of virtual reality-based group exercise therapy with cycle ergometers: An early feasibility study. Computers in Human Behavior Reports, 11, 100301. https://doi.org/10.1016/j.chbr.2023.100301
Jordán-Fiallos, D. L., Jácome-Jaramillo, A. I., & Ruiz-Luna, F. A. (2023). La realidad virtual como método de rehabilita-ción vs. La rehabilitación física convencional en la esclerosis múltiple. Revista Información Científica, 102(2 Sup), Arti-cle 2 Sup.
Khor, K. X., Rahman, H. A., Fu, S. K., Sim, L. S., Yeong, C. F., & Su, E. L. M. (2014). A Novel Hybrid Rehabilitation Robot for Upper and Lower Limbs Rehabilitation Training. Procedia Computer Science, 42, 293-300. https://doi.org/10.1016/j.procs.2014.11.065
Komaini, A., Satria, T., Alimuddin, A., Nelson, S., Andika, H., Gusti Handayani, S., Yulia Sari, Y., & Ilham, I. (2024). Effectiveness of implementing early childhood gymnastics learning compared to conventional learning for motor skills. Retos, 58, 403-408. https://doi.org/10.47197/retos.v58.105166
Kulkarni, C. A., & Wadhokar, O. C. (2023). Virtual reality a technological miracle transforming physical rehabilitation: A scoping review. Journal of Family Medicine and Primary Care, 12(7), 1257-1260. https://doi.org/10.4103/jfmpc.jfmpc_1216_22
Lombardero, J. L., & Lombardero Rodil, L. (2015). Trabajar en la era digital. LID.
Longo, U. G., Carnevale, A., Andreoli, F., Mannocchi, I., Bravi, M., Sassi, M. S. H., Santacaterina, F., Carli, M., Schena, E., & Papalia, R. (2023). Immersive virtual reality for shoulder rehabilitation: Evaluation of a physical thera-py program executed with oculus quest 2. BMC Musculoskeletal Disorders, 24(1), 859. https://doi.org/10.1186/s12891-023-06861-5
Matsangidou, M., Frangoudes, F., Schiza, E., Neokleous, K. C., Papayianni, E., Xenari, K., Avraamides, M., & Pattichis, C. S. (2023). Participatory design and evaluation of virtual reality physical rehabilitation for people living with de-mentia. Virtual Reality, 27(1), 421-438. https://doi.org/10.1007/s10055-022-00639-1
Montoya, M. F., Villada, J. F. V., Muñoz Cardona, J. E., Henao Gallo, O. A., & López, J. F. (2022). Diseño contextual para la creación de videojuego basado en Realidad Virtual usado en terapia de rehabilitación física en personas con ac-cidente cerebrovascular. Revista EIA, 19(38). https://doi.org/10.24050/reia.v19i38.1549
Nguyen, A. T., Hemphill, S., Donahue, B., Menendez, M., Rodriguez, S., & Caruso, T. J. (2023). Use of virtual reality for targeted physical rehabilitation: Case report on managing functional motor disorder. Journal of Pediatric Rehabilita-tion Medicine, 16(2), 415-423. https://doi.org/10.3233/PRM-210009
OMS. (2020). Rehabilitación en los Sistemas de Salud. Guia de Acción. http://www.who.int/about/licensing
OPS & OMS. (2023). Rehabilitación—OPS/OMS | Organización Panamericana de la Salud. https://www.paho.org/es/temas/rehabilitacion
Pedraza-Hueso, M., Martín-Calzón, S., Díaz-Pernas, F. J., & Martínez-Zarzuela, M. (2015). Rehabilitation Using Ki-nect-based Games and Virtual Reality. Procedia Computer Science, 75, 161-168. https://doi.org/10.1016/j.procs.2015.12.233
Pérez, V. Z., Yepes, J. C., Vargas, J. F., Franco, J. C., Escobar, N. I., Betancur, L., Sánchez, J., & Betancur, M. J. (2022). Virtual Reality Game for Physical and Emotional Rehabilitation of Landmine Victims. Sensors, 22(15), 5602. https://doi.org/10.3390/s22155602
Phelan, I., Carrion-Plaza, A., Furness, P. J., & Dimitri, P. (2023). Home-based immersive virtual reality physical reha-bilitation in paediatric patients for upper limb motor impairment: A feasibility study. Virtual Reality, 27(4), 3505-3520. https://doi.org/10.1007/s10055-023-00747-6
Pinzón, I. D., & Moreno, J. E. (2020). Realidad virtual como medio facilitador de actividad física en población en situa-ción de discapacidad. Cuerpo, Cultura y Movimiento, 10(2). https://doi.org/10.15332/2422474x/6232
Rodriguez-Fuentes, G., Campo-Prieto, P., Souto, X. C., & Cancela Carral, J. M. (2023). Realidad virtual inmersiva y su influencia en parámetros fisiológicos de personas sanas (Immersive virtual reality and its influence on physiological parameters in healthy people). Retos, 51, 615-625. https://doi.org/10.47197/retos.v51.101164
Rodríguez, L., Sierra, J., & Medina, B. (2020). Sistema de rehabilitación mediante técnicas de realidad virtual y video juegos para mejoramiento del control postural en personas con daño cerebral adquirido. Revista Espacios, 41(32), 186-192.
Ross, R. E., Hart, E., Williams, E. R., Gregory, C. M., Flume, P. A., Mingora, C. M., & Woodbury, M. L. (2023). Combined Aerobic Exercise and Virtual Reality-Based Upper Extremity Rehabilitation Intervention for Chronic Stroke: Feasibility and Preliminary Effects on Physical Function and Quality of Life. Archives of Rehabilitation Research and Clinical Translation, 5(1), 100244. https://doi.org/10.1016/j.arrct.2022.100244
Rusmanto, R., Tomoliyus, T., Sulastion, A., Gazali, N., Abdullah, K. H., Gil-Espinosa, F. J., & Setiawan, E. (2023). Virtual Reality to Promoting Sports Engagement and Some Technical skills in Junior Football Athletes: A 12-Week Randomized Controlled Trial. Retos, 50, 1129-1133. https://doi.org/10.47197/retos.v50.100319
Rutkowski, S., Rutkowska, A., Jastrzębski, D., Racheniuk, H., Pawełczyk, W., & Szczegielniak, J. (2019). Effect of Virtual Reality‐Based Rehabilitation on Physical Fitness in Patients with Chronic Obstructive Pulmonary Dis-ease. Journal of Human Kinetics, 69(1), 149-157. https://doi.org/10.2478/hukin-2019-0022
Sadeghi Esfahlani, S., Thompson, T., Parsa, A. D., Brown, I., & Cirstea, S. (2018). ReHabgame: A non-immersive virtu-al reality rehabilitation system with applications in neuroscience. Heliyon, 4(2), e00526. https://doi.org/10.1016/j.heliyon.2018.e00526
Solanki, D., & Lahiri, U. (2020). Adaptive Treadmill-Assisted Virtual Reality-Based Gait Rehabilitation for Post-Stroke Physical Reconditioning—A Feasibility Study in Low-Resource Settings. IEEE Access, 8, 88830-88843. https://doi.org/10.1109/ACCESS.2020.2994081
Wu, J., Zhang, H., Chen, Z., Fu, R., Yang, H., Zeng, H., & Ren, Z. (2022). Benefits of Virtual Reality Balance Training for Patients With Parkinson Disease: Systematic Review, Meta-analysis, and Meta-Regression of a Randomized Con-trolled Trial. JMIR Serious Games, 10(1), e30882. https://doi.org/10.2196/30882
Xiao, B., Chen, L., Zhang, X., Li, Z., Liu, X., Wu, X., & Hou, W. (2022). Design of a virtual reality rehabilitation sys-tem for upper limbs that inhibits compensatory movement. Medicine in Novel Technology and Devices, 13, 100110. https://doi.org/10.1016/j.medntd.2021.100110
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Retos

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.