Precision of body composition estimation from commercial bioelectrical impedance analysis devices in male Mexican soccer players
DOI:
https://doi.org/10.47197/retos.v64.110654Keywords:
body composition, bioelectrical impedance analysis, body fat, athlete, soccerAbstract
Introduction: Bioelectrical Impedance Analysis (BIA) estimates fat-free mass in athletes; however, its precision can be affected by technical errors, biological variability, and fluctuations in hydration levels.
Objective: to evaluate the technical and biological measurement errors in the estimation of body composition in male Mexican soccer players using commercial BIA devices.
Methodology: A quantitative, comparative, correlational longitudinal cohort study was conducted including 31 male soccer players. Participants underwent three assessments across two consecutive laboratory visits: two measurements during the first visit (technical error) and one during the second (biological error). Fat-free mass (FFM) estimated using Omron HBF-306, Tanita BC-514 and Omron HBF-545 BIA devices. To determine the technical error and biological error of measurements, the root means square error (RMSE) and least significant change (LSC).
Results: HBF-514 provided the lowest FFM values across the devices. The body fat estimations from BC-545, significant differences were observed in day-to-day assessment (p<0.05). Reliability analysis revealed a RMSE values of 0.52 kg, 0.24 kg and 0.26 kg and LSC values of 2.36 kg, 1.92 kg and 1.68 kg for FFM using HBF-306, BC-545 and HBF-514 respectively.
Discussion: The precision of BIA devices was lower compared to other studies conducted on general populations, suggesting that athletes’ characteristics may affect the reliability of these devices.
Conclusions: The HBF-306C showed greater variability compared to the other devices while the HBF-514 demonstrates the highest day-to-day reliability, making it a valuable tool for tracking BC in soccer players.
References
Atkinson, G. and Nevill, A.M. (1998). Statistical Methods for Assessing Measurement Error (Reliability) in Variables Relevant to Sports Medicine. Sports Medicine, 26(4), pp. 217–238. https://doi.org/10.2165/00007256-199826040-00002.
Barlow, M. J., Oldroyd, B., Smith, D., Lees, M. J., Brightmore, A., Till, K., Jones, B., & Hind, K. (2015). Precision Error in Dual-Energy X-Ray Absorptiometry Body Composition Measurements in Elite Male Rugby League Players. Journal of Clinical Densitometry, 18(4), pp. 546–550. https://doi.org/10.1016/j.jocd.2015.04.008.
Benjamin, C. L., Sekiguchi, Y., Morrissey, M. C., Butler, C.R., Filep, E. M., Stearns, R. L., Casa, D. J. (2021). The effects of hydration status and ice-water dousing on physiological and performance indices during a simulated soccer match in the heat. Journal of Science and Medicine in Sport, 24(8), pp. 723–728. https://doi.org/10.1016/j.jsams.2021.05.013.
Bland, J.M. and Altman, D.G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 1(8476), pp. 307–310.
Borga, M., West, J., Bell, J. D., Harvey, N. C., Romu, T., Heymsfield, S. B., & Leinhard, O. D. (2018). Advanced body composition assessment: From body mass index to body composition profiling. Journal of Investigative Medicine, 66(5), pp. 887–895. https://doi.org/10.1136/jim-2018-000722.
Bossingham, M.J., Carnell, N.S. and Campbell, W.W. (2005). Water balance, hydration status, and fat-free mass hydration in younger and older adults. Am J Clin Nutr, 81(6), pp. 1342–1350. https://doi.org/10.1093/ajcn/81.6.1342.
Ceballos-Gurrola, O., Bernal-Reyes, F., Jardón-Rosas, M., Enríquez-Reyna, M. C., Durazo-Quiroz, J., Ramírez-Siqueiros, M. G. (2020). Composición corporal y rendimiento físico de jugadores de fútbol soccer universitario por posición de juego (Body composition and physical performance of college soccer by player´s position). Retos, 2041(39), pp. 52–57. https://doi.org/10.47197/retos.v0i39.75075.
Citarella, R., Itani, L., Intini, V., Zucchinali, G., Scevaroli, S., Tannir, H., El Masri, D., Kreidieh, D., & El Ghoch, M. (2021). Association between dietary practice, body composition, training volume and sport performance in 100-Km elite ultramarathon runners. Clinical Nutrition ESPEN, 42, pp. 239–243. https://doi.org/10.1016/j.clnesp.2021.01.029.
Farley, A., Slater, G.J. and Hind, K. (2021). Short-term precision error of body composition assessment methods in resistance-trained male athletes. International Journal of Sport Nutrition and Exercise Metabolism, 31(1), pp. 55–65. https://doi.org/10.1123/IJSNEM.2020-0061.
Figueiredo, D. H., Figueiredo, D. H. Dourado, A. C., Stanganelli, L. C. R., Gonçalves, H. R. (2020). Evaluation of body composition and its relationship with physical fitness in professional soccer players at the beginning of pre-season. Retos, 40(40), pp. 117–125. https://doi.org/10.47197/retos.v1i40.82863.
Hangartner, T. N., Warner, S., Braillon, P., Jankowski, L., Shepherd, J. (2013). The Official Positions of the International Society for Clinical Densitometry: Acquisition of Dual-Energy X-Ray Absorptiometry Body Composition and Considerations Regarding Analysis and Repeatability of Measures. Journal of Clinical Densitometry, 16(4), pp. 520–536. https://doi.org/10.1016/j.jocd.2013.08.007.
Hume, P.A., Kerr, D.A. and Ackland, T.R. (2018). Best Practice Protocols for Physique Assessment in Sport. Edited by P.A. Hume, D.A. Kerr, and T.R. Ackland. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-5418-1.
Iraki, J., Fitschen, P., Espinar, S., & Helms, E. (2019). Nutrition recommendations for bodybuilders in the off-season: A narrative review. Sports. MDPI. https://doi.org/10.3390/sports7070154.
Kerr, A., Slater, G.J. and Byrne, N. (2017). Impact of food and fluid intake on technical and biological measurement error in body composition assessment methods in athletes. British Journal of Nutrition, 117(4), pp. 591–601. https://doi.org/10.1017/S0007114517000551.
Loenneke, J. P., Barnes, J. T., Wilson, J. M., Lowery, R. P., Isaacs, M. N., & Pujol, T. J. (2013). Reliability of field methods for estimating body fat. Clinical Physiology and Functional Imaging, 33(5), pp. 405–408. https://doi.org/10.1111/cpf.12045.
Merrigan, J., Stute, N., Eckerle, J., Mackowski, N., Walters, J., O’Connor, M., Barrett, K., Robert, R., Strang, A., & Hagen, J. (2022). Reliability and Validity of Contemporary Bioelectrical Impedance Analysis Devices for Body Composition Assessment. Journal of Exercise and Nutrition, 5(4). https://doi.org/10.53520/jen2022.103133.
Nelson, L., Gulenchyn, K. Y., Atthey, M., & Webber, C. E. (2010). Is a Fixed Value for the Least Significant Change Appropriate?. Journal of Clinical Densitometry, 13(1), pp. 18–23. https://doi.org/10.1016/j.jocd.2009.10.001.
Roelofs, E. J., Smith-Ryan, A. E., Trexler, E. T., & Hirsch, K. R. (2017). Seasonal effects on body composition, muscle characteristics, and performance of collegiate swimmers and divers. Journal of Athletic Training, 52(1), pp. 45–50. https://doi.org/10.4085/1062-6050-51.12.26.
Siedler, M. R., Harty, P. S., Stratton, M. T., Rodriguez, C., Keith, D., Green, J., Boykin, J., Dellinger, J., White, S., Williams, A., Dehaven, B., & Tinsley, G. M. (2021). Abstract Day-to-Day Precision Error and Least Significant Change for Two Commonly Used Bioelectrical Impedance Analysis Devices. International Journal of Exercise Science: Conference Proceedings, 2(13).
Siedler, M. R., Rodriguez, C., Stratton, M. T., Harty, P. S., Keith, D. S., Green, J. J., Boykin, J. R., White, S. J., Williams, A. D., Dehaven, B., & Tinsley, G. M. (2023). Assessing the reliability and cross-sectional and longitudinal validity of fifteen bioelectrical impedance analysis devices. British Journal of Nutrition, 130(5), pp. 827–840. https://doi.org/10.1017/S0007114522003749.
Sutton, L., Scott, M., Wallace, J. Reilly, T. (2009). Body composition of English Premier League soccer players: Influence of playing position, international status, and ethnicity. Journal of Sports Sciences, 27(10), pp. 1019–1026. https://doi.org/10.1080/02640410903030305.
Tinsley, G. M., Harty, P. S., Stratton, M. T., Smith, R. W., Rodriguez, C., & Siedler, M. R. (2022). Tracking changes in body composition: comparison of methods and influence of pre-assessment standardization. British Journal of Nutrition, 127(11), pp. 1656–1674. https://doi.org/10.1017/S0007114521002579.
Zemski, A. J., Hind, K., Keating, S. E., Broad, E. M., Marsh, D. J., & Slater, G. J. (2019). Same-Day Vs Consecutive-Day Precision Error of Dual-Energy X-Ray Absorptiometry for Interpreting Body Composition Change in Resistance-Trained Athletes. Journal of Clinical Densitometry, 22(1), pp. 104–114. https://doi.org/10.1016/j.jocd.2018.10.005.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Manuel A. Vázquez-Bautista, Enrique Castilla-Arias, Alejandrina Bautista-Jacobo, Perla E. Medina-Corral, Fernanda Delgado-Gaytán

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.