Melhorando o treinamento de levantamento terra por meio de um sistema de treinamento pessoal baseado em IA usando análise esquelética

Autores

  • Bolganay Kaldarova South Kazakhstan State Pedagogical University
  • Aigerim Toktarova Khoja Akhmet Yassawi International Kazakh-Turkish University
  • Rustam Abdrakhmanov International University of Tourism and Hospitality

DOI:

https://doi.org/10.47197/retos.v60.109183

Palavras-chave:

AI-driven coaching, deadlift training, skeletal analysis, PoseNet, deep learning, exercise monitoring, real-time feedback

Resumo

Este artigo apresenta um sistema inovador de treinamento pessoal baseado em IA, projetado para melhorar o treinamento de levantamento terra usando análise esquelética avançada e técnicas de aprendizado profundo. O sistema proposto emprega o modelo PoseNet para capturar e analisar sequências de vídeo em tempo real, extraindo coordenadas de pontos-chave e ângulos esqueléticos para monitorar com precisão a postura e os movimentos do usuário. Usando os métodos Histogramas Locais de Gradientes Orientados (LHOG) e Histogramas Locais de Fluxo Óptico (LHOF), o sistema realiza uma extração abrangente de características, avaliando os aspectos estáticos e dinâmicos do exercício. O modelo de aprendizagem profunda, treinado com um extenso conjunto de dados de execuções corretas e incorretas do levantamento terra, classifica a correção do exercício com alta precisão, fornecendo feedback em tempo real e recomendações personalizadas aos usuários. Este feedback corretivo imediato facilita ajustes rápidos, reduz o risco de lesões e promove a técnica adequada, melhorando a eficácia geral do treinamento de força. A capacidade do sistema de fornecer feedback específico do usuário, adaptado às estruturas corporais e aos padrões de movimento individuais, garante sua relevância e eficácia em vários ambientes de treinamento. As aplicações práticas deste sistema abrangem academias, centros de reabilitação e ambientes domésticos, tornando-o uma ferramenta valiosa para personal trainers e fisioterapeutas. Embora o estudo demonstre um potencial significativo, ele também identifica áreas para pesquisas futuras, incluindo refinamento de algoritmos, expansão de conjuntos de dados e integração de métricas e tecnologias adicionais. No seu conjunto, o sistema proposto representa um avanço substancial na monitorização e melhoria do exercício, contribuindo para o campo mais amplo das tecnologias de saúde e fitness alimentadas pela inteligência artificial e abrindo caminho para rotinas de treino de força mais seguras e eficazes.

Palavras-chave: coaching baseado em IA, treinamento de levantamento terra, análise esquelética, PoseNet, aprendizado profundo, monitoramento de exercícios, feedback em tempo real.

Referências

Hart, R., Smith, H., & Zhang, Y. (2024). The development of an automated assessment system for resistance training movement. Sports Biomechanics, 1-33.

Washif, J., Pagaduan, J., James, C., Dergaa, I., & Beaven, C. (2024). Artificial intelligence in sport: Exploring the poten-tial of using ChatGPT in resistance training prescription. Biology of sport, 41(2), 209-220.

Balsalobre-Fernández, C., Xu, J., Jarvis, P., Thompson, S., Tannion, K., & Bishop, C. (2023). Validity of a Smartphone App Using Artificial Intelligence for the Real-Time Measurement of Barbell Velocity in the Bench Press Exercise. The Journal of Strength & Conditioning Research, 37(12), e640-e645.

Chariar, M., Rao, S., Irani, A., Suresh, S., & Asha, C. S. (2023). AI trainer: Autoencoder based approach for squat anal-ysis and correction. IEEE Access.

Chen, C. H., Wu, S. H., Shiu, Y. J., Yu, S. Y., & Chiu, C. H. (2023). Acute enhancement of Romanian deadlift perfor-mance after consumption of caffeinated chewing gum. Scientific Reports, 13(1), 22016.

Mahmoud, S. E. H., & Taha, Z. A. E. H. (2023, July). AI Personal Trainer for Lateral Raises and Shoulder Presses Exer-cises. In 2023 Intelligent Methods, Systems, and Applications (IMSA) (pp. 118-123). IEEE.

Omarov, B., Suliman, A., & Tsoy, A. (2016). Parallel backpropagation neural network training for face recognition. Far East Journal of Electronics and Communications, 16(4), 801-808.

Omarov, B., Narynov, S., Zhumanov, Z., Gumar, A., Khassanova, M. (2022). A skeleton-based approach for campus violence detection. Computers, Materials & Continua, 72(1), 315-331. https://doi.org/10.32604/cmc.2022.024566

Støve, M. P., & Hansen, E. C. K. (2022). Accuracy of the Apple Watch Series 6 and the Whoop Band 3.0 for assessing heart rate during resistance exercises. Journal of Sports Sciences, 40(23), 2639-2644.

Kumar, G. K., Bangare, M. L., Bangare, P. M., Kumar, C. R., Raj, R., Arias-Gonzáles, J. L., ... & Mia, M. S. (2024). Internet of things sensors and support vector machine integrated intelligent irrigation system for agriculture industry. Discover Sustainability, 5(1), 6.

Tursynova, A., Omarov, B., Sakhipov, A., & Tukenova, N. (2022). Brain Stroke Lesion Segmentation Using Computed Tomography Images based on Modified U-Net Model with ResNet Blocks. International Journal of Online & Biomed-ical Engineering, 18(13).

Babu, A. H., Shanthakumar, S., & Malarselvi, G. (2024, July). Live gym tracker using artificial intelligence. In AIP Con-ference Proceedings (Vol. 3075, No. 1). AIP Publishing.

Ho, I. M. K., Weldon, A., Yong, J. T. H., Lam, C. T. T., & Sampaio, J. (2023). Using machine learning algorithms to pool data from meta-analysis for the prediction of countermovement jump improvement. International Journal of En-vironmental Research and Public Health, 20(10), 5881.

Farrokhi, A., Rezazadeh, J., Farahbakhsh, R., & Ayoade, J. (2022). A decision tree-based smart fitness framework in IoT. SN Computer Science, 3(1), 2.

Garg, B. (2023). Deep Learning Approach to Skeletal Performance Evaluation of Physical Therapy Exercises. University of California, San Diego.

Ishida, A., Bazyler, C. D., Suarez, D. G., Slaton, J. A., White, J. B., & Stone, M. H. (2023). The difference between several neuromuscular tests for monitoring resistance-training induced fatigue. Journal of Sports Sciences, 41(3), 209-216.

Steele, J., Fisher, J. P., Giessing, J., Androulakis-Korakakis, P., Wolf, M., Kroeske, B., & Reuters, R. (2023). Long-term time-course of strength adaptation to minimal dose resistance training through retrospective longitudinal growth modeling. Research Quarterly for Exercise and Sport, 94(4), 913-930.

Omarov, B., Narynov, S., & Zhumanov, Z. (2023). Artificial intelligence-enabled chatbots in mental health: a systematic review. Comput. Mater. Continua 74, 5105–5122 (2022).

Morán-Navarro, R., Martínez-Cava, A., Escribano-Peñas, P., & Courel-Ibáñez, J. (2021). Load-velocity relationship of the deadlift exercise. European journal of sport science, 21(5), 678-684.

Tursynova, A., & Omarov, B. (2021, November). 3D U-Net for brain stroke lesion segmentation on ISLES 2018 dataset. In 2021 16th International Conference on Electronics Computer and Computation (ICECCO) (pp. 1-4). IEEE.

Aasa, U., Bengtsson, V., Berglund, L., & Öhberg, F. (2022). Variability of lumbar spinal alignment among power-and weightlifters during the deadlift and barbell back squat. Sports biomechanics, 21(6), 701-717.

Enes, A., Leonel, D. F., Oneda, G., Alves, R. C., Zandoná-Schmidt, B. A., Ferreira, L. H. B., ... & Souza-Junior, T. P. (2023). Muscular adaptations and psychophysiological responses in resistance training systems. Research Quarterly for Exercise and Sport, 94(4), 982-989.

Lee, S., Lim, Y., & Lim, K. (2024). Multimodal sensor fusion models for real-time exercise repetition counting with IMU sensors and respiration data. Information Fusion, 104, 102153.

Rahman, A., Saji, A., Teresa, A., Nair, D. R., & Saritha, S. (2024, June). Physical Exercise Classification from Body Keypoints Using Machine Learning Techniques. In 2024 3rd International Conference on Applied Artificial Intelli-gence and Computing (ICAAIC) (pp. 504-510). IEEE.

Romdhani, A., Sahli, F., Trabelsi, O., Rebhi, M., Ghouili, H., Sahli, H., ... & Zghibi, M. (2024). Peer Verbal Encour-agement Is More Effective than Coach Encouragement in Enhancing CrossFit-Specific 1-RM Strength, Functional En-durance, and Psychophysiological Assessment Performance. Sports, 12(3), 64.

Lester, M., Peeling, P., Girard, O., Murphy, A., Armstrong, C., & Reid, M. (2023). From The Ground Up: Expert Perceptions of Lower Limb Activity Monitoring in Tennis. Journal of Sports Science & Medicine, 22(1), 133.

Rethinam, P., Manoharan, S., Kirupakaran, A. M., Srinivasan, R., Hegde, R. S., & Srinivasan, B. (2023, September). Olympic Weightlifters' Performance Assessment Module Using Computer Vision. In 2023 IEEE International Work-shop on Sport, Technology and Research (STAR) (pp. 8-12). IEEE.

Masel, S., & Maciejczyk, M. (2023). Post-activation effects of accommodating resistance and different rest intervals on vertical jump performance in strength trained males. BMC Sports Science, Medicine and Rehabilitation, 15(1), 65.

Choi, W., Choi, T., & Heo, S. (2023). A Comparative Study of Automated Machine Learning Platforms for Exercise Anthropometry-Based Typology Analysis: Performance Evaluation of AWS SageMaker, GCP VertexAI, and MS Az-ure. Bioengineering, 10(8), 891.

Yang, T. J., Shiu, Y. J., Chen, C. H., Yu, S. Y., Hsu, Y. Y., & Chiu, C. H. (2024). Carbohydrate Mouth Rinses before Exercise Improve Performance of Romanian Deadlift Exercise: A Randomized Crossover Study. Nutrients, 16(8), 1248.

Schlegel, P., & Polívka, T. (2024). Beyond the intensity: A systematic review of rhabdomyolysis following high-intensity functional training. Apunts Sports Medicine, 59(223), 100447.

Sisinni, E., Depari, A., Bellagente, P., Ferrari, P., Flammini, A., Pasetti, M., & Rinaldi, S. (2022, August). On feature selection in automatic detection of fitness exercises using LSTM models. In 2022 IEEE Sensors Applications Symposi-um (SAS) (pp. 1-6). IEEE.

Balaji, A. N., & Peh, L. S. (2023). AI-On-Skin: Towards Enabling Fast and Scalable On-body AI Inference for Wearable On-Skin Interfaces. Proceedings of the ACM on Human-Computer Interaction, 7(EICS), 1-34.

Pekas, D., Radaš, J., Baić, M., Barković, I., & Čolakovac, I. (2023). The use of wearable monitoring devices in sports sciences in COVID years (2020–2022): a systematic review. Applied Sciences, 13(22), 12212.

Külkamp, W., Bishop, C., Kons, R., Antunes, L., Carmo, E., Hizume-Kunzler, D., & Dal Pupo, J. (2024). Concurrent validity and technological error-based reliability of a novel device for velocity-based training. Measurement in Physi-cal Education and Exercise Science, 28(1), 15-26.

Vargas-Molina, S., García-Sillero, M., Bonilla, D. A., Petro, J. L., García-Romero, J., & Benítez-Porres, J. (2024). The effect of the ketogenic diet on resistance training load management: a repeated-measures clinical trial in trained par-ticipants. Journal of the International Society of Sports Nutrition, 21(1), 2306308.

Kons, R. L., Detanico, D., Costa, F. E., Franchini, E., Dopico-Calvo, X., Morales Aznar, J., ... & Weldon, A. (2024). Strength and conditioning practices of judo coaches. International Journal of Sports Science & Coaching, 19(2), 573-585.

Omarov, B., Batyrbekov, A., Suliman, A., Omarov, B., Sabdenbekov, Y., & Aknazarov, S. (2020, November). Electron-ic stethoscope for detecting heart abnormalities in athletes. In 2020 21st International Arab Conference on Infor-mation Technology (ACIT) (pp. 1-5). IEEE.

Champ, C. E., Peluso, C., Carenter, D. J., Rosenberg, J., Velasquez, F., Annichine, A., ... & Hilton, C. (2024). EX-ERT-BC: Prospective Study of an Exercise Regimen After Treatment for Breast Cancer. Sports Medicine Interna-tional Open, 8(continuous publication).

Omarov, B., Narynov, S., Zhumanov, Z., Gumar, A., & Khassanova, M. (2022). State-of-the-art violence detection techniques in video surveillance security systems: a systematic review. PeerJ Computer Science, 8, e920.

Omarov, B., Omarov, N., Mamutov, Q., Kissebaev, Z., Anarbayev, A., Tastanov, A., & Yessirkepov, Z. (2024). Exami-nation of the augmented reality exercise monitoring system as an adjunct tool for prospective teacher trainers. Retos: nuevas tendencias en educación física, deporte y recreación, (58), 85-94.

Widodo, A., Irianto, J. P., Graha, A. S., Yudanto, Y., Hardianto, D., Sutapa, P., ... & Pratama, K. W. (2024). The Per-sonalized System of E-Modul Instructions in Physical Education Online Learning. Retos: nuevas tendencias en edu-cación física, deporte y recreación, (56), 319-327.

Nurhidayah, D., Prasetyo, Y., Sutapa, P., Mitsalina, D., Yuliana, E., & Pambudi, T. (2024). Relationship exercise moti-vation levels on quality of life during retirement from elite sport. Retos: nuevas tendencias en educación física, de-porte y recreación, (56), 433-438.

Babaskin, D., Masharipov, F., Savinkova, O., Shustikova, N., Volkova, N., & Chakalova, A. (2024). Functional state of team sports athletes in the annual training cycle. Retos: Nuevas Perspectivas de Educación Física, Deporte y Rec-reación, 54.

Downloads

Publicado

01-11-2024

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.

Como Citar

Kaldarova, B., Toktarova, A., & Abdrakhmanov, R. (2024). Melhorando o treinamento de levantamento terra por meio de um sistema de treinamento pessoal baseado em IA usando análise esquelética. Retos, 60, 439-448. https://doi.org/10.47197/retos.v60.109183