Atividade dos músculos intrínsecos do pé durante uma pega máxima. Um estudo descritivo em corredores

Autores

DOI:

https://doi.org/10.47197/retos.v60.107655

Palavras-chave:

Músculos intrínsecos del pie, Agarre máximo del pie, Electromiografía de superficie, Corredores aficionados

Resumo

O objetivo deste estudo foi descrever a percentagem de ativação dos músculos intrínsecos do pé (MIP) durante o gesto de preensão máxima do pé, em corredores de recreio. Neste estudo descritivo foram avaliados 10 corredores amadores (idade = 22,5 ± 2,8 anos; altura = 1,6 ± 0,0 m; peso = 67,6 ± 12,0kg; sexo = cinco mulheres, cinco homens). Todos os voluntários deram consentimento prévio informado. A atividade mioelétrica foi avaliada em seis MIPs: extensor curto dos dedos (ECD), primeiro interósseo dorsal (ID), abdutor curto dos dedos (AbdQD), flexor curto dos dedos/quadrado plantar (FCD/CP), flexor curto dos dedos do hálux (FCH) e hálux abdutor (AbdH). Esta medição foi realizada através de eletromiografia de superfície (EMG) durante a preensão máxima. A amplitude destes sinais foi expressa em percentagem da sua amplitude durante uma contração voluntária máxima (%CVM), que foi captada em testes específicos para cada PImáx. Todos os dados foram analisados ​​com estatística descritiva, utilizando medidas de centralização (média) e dispersão (desvio padrão). Os músculos FCD/CP (71,0 ± 10,9%CVM), ID (62,4 ± 24,1%CVM) e AbdQD (46,1 ± 18,1%CVM) apresentaram maior atividade durante a preensão máxima. Em contraste, o músculo que apresentou menor atividade durante a preensão foi o DCE (7,5 ± 5,7%CVM). Concluindo, foi observada variação nos níveis de atividade para cada PImáx durante a preensão, destacando-se uma maior ativação do músculo FCD/CP, que está diretamente envolvido na flexão plantar da articulação metatarsofalângica.

Palavras-chave: músculos intrínsecos do pé, preensão máxima do pé, eletromiografia de superfície, corredores amadores.

Biografia do Autor

  • Oscar Valencia, Universidad de los Andes
    Docente investigador, Laboratorio Integrativo de Biomecánica y Fisiología del Esfuerzo, Escuela de Kinesiología, Universidad de los Andes.

Referências

Alam, F., Raza, S., Moiz, J. A., Bhati, P., Anwer, S., & Alghadir, A. (2019). Effects of selective strengthening of tibialis posterior and stretching of iliopsoas on navicular drop, dynamic balance, and lower limb muscle activity in pronated feet: A randomized clinical trial. The Physician and Sportsmedicine, 47(3), 301–311. https://doi.org/10.1080/00913847.2018.1553466

Arai, R., Fuchigami, M., Hatamura, K., Yamamoto, K., & Yoshimatsu, T. (2023). Relationship between toe grip strength and dynamic balance in older adult patients with femoral neck fracture. Journal of Physical Therapy Science, 35(5), 2023–002. https://doi.org/10.1589/jpts.35.384

Araya, D., López, J., Villalobos, G., Guzmán-Venegas, R., & Valencia, O. (2021). Changes in muscle coactivation dur-ing running: a comparison between two techniques, forefoot vs rearfoot. Archivos de Medicina Del Deporte, 38(5), 332–336. https://doi.org/10.18176/archmeddeporte.00059

Branthwaite, H., Aitkins, C., Lindley, S., & Chockalingam, N. (2019). Surface electromyography of the foot: A proto-col for sensor placement. The Foot, 41, 24–29. https://doi.org/10.1016/j.foot.2019.07.001

Chen, K.-C., Yeh, C.-J., Kuo, J.-F., Hsieh, C.-L., Yang, S.-F., & Wang, C.-H. (2011). Footprint analysis of flatfoot in preschool-aged children. European Journal of Pediatrics, 170(5), 611–617. https://doi.org/10.1007/s00431-010-1330-4

Di Nardo, F., Strazza, A., Palmieri, M. S., Mengarelli, A., Burattini, L., Orsini, O., Bortone, A., & Fioretti, S. (2018). Detection of surface-EMG activity from the extensor digitorum brevis muscle in healthy children walking. Physiologi-cal Measurement, 39(1), 014001. https://doi.org/10.1088/1361-6579/aa9d36

Farris, D. J., Kelly, L. A., Cresswell, A. G., & Lichtwark, G. A. (2019). The functional importance of human foot mus-cles for bipedal locomotion. Proceedings of the National Academy of Sciences of the United States of America, 116(5), 1645–1650. https://doi.org/10.1073/pnas.1812820116

Garth, W. P., & Miller, S. T. (1989). Evaluation of claw toe deformity, weakness of the foot intrinsics, and posterome-dial shin pain. The American Journal of Sports Medicine, 17(6), 821–827. https://doi.org/10.1177/036354658901700617

Hur, M., Kim, J., Woo, J., Choi, B., Kim, H., & Lee, K. (2011). An anatomic study of the quadratus plantae in relation to tendinous slips of the flexor hallucis longus for gait analysis. Clinical Anatomy, 24(6), 768–773. https://doi.org/10.1002/ca.21170

Ilayperuma, I. (2012). On the Variations of the Muscle Flexor Digitorum Brevis: Anatomical Insight. International Journal of Morphology, 30(1), 337–340. https://doi.org/10.4067/S0717-95022012000100059

Jastifer, J. R. (2023). Intrinsic muscles of the foot: Anatomy, function, rehabilitation. Physical Therapy in Sport, 61, 27–36. https://doi.org/10.1016/J.PTSP.2023.02.005

Kakouris, N., Yener, N., & Fong, D. T. P. (2021). A systematic review of running-related musculoskeletal injuries in runners. Journal of Sport and Health Science, 10(5), 513–522. https://doi.org/10.1016/J.JSHS.2021.04.001

Kalin, P. J., & Hirsch, B. E. (1987). The origins and function of the interosseous muscles of the foot. Journal of Anatomy, 152, 83–91. http://www.ncbi.nlm.nih.gov/pubmed/3654378

Kurihara, T., Yamauchi, J., Otsuka, M., Tottori, N., Hashimoto, T., & Isaka, T. (2014). Maximum toe flexor muscle strength and quantitative analysis of human plantar intrinsic and extrinsic muscles by a magnetic resonance imaging technique. Journal of Foot and Ankle Research, 7(1), 26. https://doi.org/10.1186/1757-1146-7-26

Kusagawa, Y., Kurihara, T., Maeo, S., Sugiyama, T., Kanehisa, H., & Isaka, T. (2022). Associations between the size of individual plantar intrinsic and extrinsic foot muscles and toe flexor strength. Journal of Foot and Ankle Research, 15(1), 22. https://doi.org/10.1186/s13047-022-00532-9

Lee, D. Y., Seo, S. G., Kim, E. J., Kim, S. J., Lee, K. M., & Choi, I. H. (2016). Inter-segmental motions of the foot in healthy adults: Gender difference. Journal of Orthopaedic Science, 21(6), 804–809. https://doi.org/10.1016/j.jos.2016.07.025

Lopes, A. D., Hespanhol, L. C., Yeung, S. S., & Costa, L. O. P. (2012). What are the Main Running-Related Musculo-skeletal Injuries? Sports Medicine, 42(10), 891–905. https://doi.org/10.2165/11631170-000000000-00000

Nguyen, A.-D., & Shultz, S. J. (2007). Sex Differences in Clinical Measures of Lower Extremity Alignment. Journal of Orthopaedic & Sports Physical Therapy, 37(7), 389–398. https://doi.org/10.2519/jospt.2007.2487

Okamura, K., Kanai, S., Hasegawa, M., Otsuka, A., & Oki, S. (2019). Effect of electromyographic biofeedback on learning the short foot exercise. Journal of Back and Musculoskeletal Rehabilitation, 32(5), 685–691. https://doi.org/10.3233/BMR-181155

Oliveira, G. M., Lopes, A. D., & Hespanhol, L. (2021). Are there really many runners out there? Is the proportion of runners increasing over time? A population-based 12-year repeated cross-sectional study with 625,460 Brazilians. Journal of Science and Medicine in Sport, 24(6), 585–591. https://doi.org/10.1016/j.jsams.2020.11.014

Park, D.-J., & Hwang, Y.-I. (2020). Comparison of the Intrinsic Foot Muscle Activities between Therapeutic and Three-Dimensional Foot-Ankle Exercises in Healthy Adults: An Explanatory Study. International Journal of Environ-mental Research and Public Health, 17(19), 7189. https://doi.org/10.3390/ijerph17197189

Ridge, S. T., Rowley, K. M., Kurihara, T., Mcclung, M., Tang, J., Reischl, S., & Kulig, K. (2022). Contributions of In-trinsic and Extrinsic Foot Muscles during Functional Standing Postures. https://doi.org/10.1155/2022/7708077

Sauer, L. D., Beazell, J., & Hertel, J. (2011). Considering the Intrinsic Foot Musculature in Evaluation and Rehabilita-tion for Lower Extremity Injuries. Athletic Training & Sports Health Care, 3(1), 43–47. https://doi.org/10.3928/19425864-20100730-02

Smith, R. E., Lichtwark, G. A., & Kelly, L. A. (2022). Flexor digitorum brevis utilizes elastic strain energy to contrib-ute to both work generation and energy absorption at the foot. Journal of Experimental Biology, 225(8). https://doi.org/10.1242/jeb.243792

Soma, M., Murata, S., Kai, Y., Nakae, H., Satou, Y., Murata, J., & Miyazaki, J. (2016). Examinations of factors influ-encing toe grip strength. Journal of Physical Therapy Science, 28(11), 3131–3135. https://doi.org/10.1589/JPTS.28.3131

Soysa, A., Hiller, C., Refshauge, K., & Burns, J. (2012). Importance and challenges of measuring intrinsic foot muscle strength. Journal of Foot and Ankle Research, 5(1), 29. https://doi.org/10.1186/1757-1146-5-29

Taddei, U. T., Matias, A. B., Duarte, M., & Sacco, I. C. N. (2020). Foot Core Training to Prevent Running-Related Injuries: A Survival Analysis of a Single-Blind, Randomized Controlled Trial. The American Journal of Sports Medicine, 48(14), 3610–3619. https://doi.org/10.1177/0363546520969205

Tsuyuguchi, R., Kurose, S., Seto, T., Takao, N., Tagashira, S., Tsutsumi, H., Otsuki, S., & Kimura, Y. (2018). Toe grip strength in middle-aged individuals as a risk factor for falls. The Journal of Sports Medicine and Physical Fitness, 58(9), 1325–1330. https://doi.org/10.23736/S0022-4707.17.07473-4

Valencia, O., Araneda, O., Cárcamo, M., Carpes, F., & Guzmán-Venegas, R. (2018). Relationship between lower limb anthropometry and temporo-spatial parameters in gait of young adults. Retos, 33, 1–258. https://recyt.fecyt.es/index.php/retos/article/view/58136/36652

Valencia, O., Cristi, I., Ahumada, D., Meza, K., Salas, R., Weinstein, A., & Guzmán-Venegas, R. (2020). The initial impact with forefoot increases the muscular activity of gastrocnemius during running. A quantitative study of elec-tromyographic activity. Retos, 38, 271–275. https://doi.org/https://doi.org/10.47197/retos.v38i38.73955

Valencia, O., Weinstein, A., Salas, R., Guzmán-Venegas, R., Arvanitidis, M., & Martinez-Valdes, E. (2022). Temporal differences in the myoelectric activity of lower limb muscles during rearfoot and forefoot running: A statistical par-ametric mapping approach. European Journal of Sport Science, 1–9. https://doi.org/10.1080/17461391.2022.2081094

Wei, Z., Zeng, Z., Liu, M., & Wang, L. (2022). Effect of intrinsic foot muscles training on foot function and dynamic postural balance: A systematic review and meta-analysis. PLOS ONE, 17(4), e0266525. https://doi.org/10.1371/journal.pone.0266525

Publicado

01-11-2024

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.

Como Citar

Valencia, O., Naranjo, C., Aravena, H., Barreto, R., Bugeño, D., & Palma, F. (2024). Atividade dos músculos intrínsecos do pé durante uma pega máxima. Um estudo descritivo em corredores. Retos, 60, 1298-1303. https://doi.org/10.47197/retos.v60.107655