Um estudo do gasto energético (consumo de oxigénio, EPOC e lactato) a diferentes distâncias de corrida

Autores

DOI:

https://doi.org/10.47197/retos.v68.116088

Palavras-chave:

Ácido láctico, gasto energético, consumo de oxigénio, EPOC, metabolismo anaeróbio

Resumo

Introdução: Este estudo examinou as exigências metabólicas da corrida, analisando as contribuições do consumo de oxigénio do exercício, da EPO e da acumulação de lactato para o gasto energético total. Compreender a sua interação é fundamental para melhorar o treino e a monitorização fisiológica em atletas de elite.
Objectivo: Avaliar as contribuições relativas dos sistemas de energia aeróbia e anaeróbia a diferentes distâncias de corrida utilizando uma abordagem fisiológica validada em corredores de elite do sexo masculino.
Metodologia: Dezasseis corredores de elite de Nínive, Iraque, participaram em provas de 100, 400 e 3.000 metros sob condições ambientais controladas. Os dados metabólicos foram recolhidos com um analisador de gases portátil e o lactato sanguíneo capilar foi medido.
Resultados: Foram observadas diferenças significativas entre as distâncias (p < 0,001). Aos 100 m predominou o metabolismo anaeróbio (8,57% oxigénio, 68,87% epoc, 22,56% lactato). Aos 400 m, o perfil foi misto (16,78% oxigénio, 53,04% epoc, 30,17% lactato). A 3000 m, o metabolismo aeróbio dominou (68,00% oxigénio, 25,96% epoc, 6,04% lactato). As análises confirmaram a relevância do metabolismo anaeróbio em esforços curtos.
Discussão: Estudos anteriores subestimaram os componentes anaeróbios. A inclusão da cinética do lactato e do EPOC melhora a compreensão do gasto energético durante o exercício intenso.
Conclusões: A integração de componentes anaeróbios permite uma estimativa mais precisa do gasto energético total, promovendo melhores modelos de desempenho e estratégias de saúde.

Referências

ACSM. (2018). Guidelines for Exercise Testing and Prescription. 10th ed. https://acsm.org/education-resources/books/guidelines-exercise-testing-prescription/

Ainsworth, B. E., Haskell, W. L., Herrmann, S. D., Meckes, N., Bassett, D. R., Jr, Tudor-Locke, C., Greer, J Vezina, J., Whitt-Glover, M. C., & Leon, A. S. (2011). 2011 Compendium of Physical Activities: a second update of codes and MET values. Medicine and science in sports and exercise, 43(8), 1575–1581. [PubMed] [Crossref]

Beneke, R., & Hütler, M. (2005). The effect of training on running economy and performance in recrea-tional athletes. Medicine & Science in Sports & Exercise, 37(10), 1794-1799. [PubMed] [Crossref]

Beneke, R., Pollmann, C., Bleif, I., Leithäuser, R. M., & Hütler, M. (2002). How anaerobic is the Wingate Anaerobic Test for humans. European journal of applied physiology, 87(4-5), 388–392. [PubMed] [Crossref]

van Loon, L. J., Greenhaff, P. L., Constantin-Teodosiu, D., Saris, W. H., & Wagenmakers, A. J. (2001). The effects of increasing exercise intensity on muscle fuel utilisation in humans. The Journal of physiology, 536(Pt 1), 295–304. . [PubMed] [Crossref]

Børsheim, E., & Bahr, R. (2003). Effect of exercise intensity, duration and mode on post-exercise oxygen consumption. Sports medicine (Auckland, N.Z.), 33(14), 1037–1060. [PubMed] [Crossref]

Brito-da-Silva, G., Manzanares, G., Beltrame Barone, B., Silva Dos Santos, V., Sturion Fillipini, S., & G Gandra, P. (2024). Carbohydrate storage in cells: a laboratory activity for the assessment of gly-cogen stores in biological tissues. Advances in physiology education, 48(4), 742–751. [Crossref]

Brooks G. A. (2018). The Science and Translation of Lactate Shuttle Theory. Cell metabolism, 27(4), 757–785. . [PubMed] [Crossref]

Brooks G. A. (2007). Lactate: link between glycolytic and oxidative metabolism. Sports medicine (Auckland, N.Z.), 37(4-5), 341–343. [PubMed] [Crossref]

Buchheit, M., & Laursen, P. B. (2013). High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports medicine (Auckland, N.Z.), 43(5), 313–338. [PubMed] [Crossref]

Coyle E. F. (1995). Substrate utilization during exercise in active people. The American journal of clini-cal nutrition, 61(4 Suppl), 968S–979S. [PubMed] [Crossref]

Chtourou, Hamdi, and Nizar Souissi. “The effect of training at a specific time of day: a review.” Journal of strength and conditioning research vol. 26,7 (2012): 1984-2005. [PubMed] [Crossref]

Gaitanos, G. C., Williams, C., Boobis, L. H., & Brooks, S. (1993). Human muscle metabolism during inter-mittent maximal exercise. Journal of applied physiology (Bethesda, Md. : 1985), 75(2), 712–719. [Crossref]

Gastin P. B. (2001). Energy system interaction and relative contribution during maximal exercise. Sports medicine (Auckland, N.Z.), 31(10), 725–741. [PubMed] [Crossref]

Irvine, Christopher; Laurent, Matthew; Kielsmeier, Kaitlyn; Douglas, Stephanie; Kutz, Matthew; and Fullenkamp, Adam (2017) "The Determination of Total Energy Expenditure During and Fol-lowing Repeated High-Intensity Intermittent Sprint Work," International Journal of Exercise Science: Vol. 10 : Iss. 3, Pages 312 - 321. [Crossref]

Joyner, M. J., & Coyle, E. F. (2008). Endurance exercise performance: the physiology of champions. The Journal of physiology, 586(1), 35–44. [PubMed] [Crossref]

LaForgia, J., Withers, R. T., & Gore, C. J. (2006). Effects of exercise intensity and duration on the excess post-exercise oxygen consumption. Journal of sports sciences, 24(12), 1247–1264. [PubMed] [Crossref]

MARGARIA, R., CERRETELLI, P., & MANGILI, F. (1964). BALANCE AND KINETICS OF ANAEROBIC EN-ERGY RELEASE DURING STRENUOUS EXERCISE IN MAN. Journal of applied physiology, 19, 623–628. [PubMed] [Crossref]

McArdle, W. D., Katch, F. I., & Katch, V. L. (2015). Exercise physiology: nutrition, energy, and human performance. Lippincott Williams & Wilkins.‏

Medbø, J. I., & Toska, K. (2001). Lactate release, concentration in blood, and apparent distribution vol-ume after intense bicycling. The Japanese journal of physiology, 51(3), 303–312. [PubMed] [Crossref]

Mitchell, L., Wilson, L., Duthie, G., Pumpa, K., Weakley, J., Scott, C., & Slater, G. (2024). Methods to Assess Energy Expenditure of Resistance Exercise: A Systematic Scoping Review. Sports medicine (Auckland, N.Z.), 54(9), 2357–2372. [PubMed] [Crossref]

Ndahimana, D., & Kim, E. K. (2017). Measurement Methods for Physical Activity and Energy Expendi-ture: a Review. Clinical nutrition research, 6(2), 68–80. .[PubMed] [Crossref]

Pyne, D. B., Boston, T., Martin, D. T., & Logan, A. (2000). Evaluation of the Lactate Pro blood lactate ana-lyser. European journal of applied physiology, 82(1-2), 112–116. [PubMed] [Crossref]

Phillips, W. T., & Ziuraitis, J. R. (2003). Energy cost of the ACSM single-set resistance training protocol. Journal of strength and conditioning research, 17(2), 350–355. [PubMed] [Crossref]

Robergs, R. A., Ghiasvand, F., & Parker, D. (2004). Biochemistry of exercise-induced metabolic acidosis. American journal of physiology. Regulatory, integrative and comparative physiology, 287(3), R502–R516. [PubMed] [Crossref]

Scott C. B. (1997). Interpreting energy expenditure for anaerobic exercise and recovery: an anaerobic hypothesis. The Journal of sports medicine and physical fitness, 37(1), 18–23. [PubMed]

Scott C. B. (2006). Contribution of blood lactate to the energy expenditure of weight training. Journal of strength and conditioning research, 20(2), 404–411. [PubMed] [Crossref]

Scott C. B. (2005). Contribution of anaerobic energy expenditure to whole body thermogenesis. Nutri-tion & metabolism, 2(1), 14. [PubMed] [Crossref]

Scott, C. B., & Kemp, R. B. (2005). Direct and indirect calorimetry of lactate oxidation: implications for whole-body energy expenditure. Journal of sports sciences, 23(1), 15–19. [PubMed][Crossref]

Scott, Christopher & Djurisic, Z.(2008). The metabolic oxidation of glucose: Thermodynamic consider-ations for anaerobic and aerobic energy expanditure. Journal of Exercise Physiology Online. 11. 34-43.

Retty, T. (2022). The effects of nose-breathing-only training on physiological parameters related to running performance (Doctoral dissertation).‏ http://hdl.handle.net/1807/111286

Reis, V. M., Garrido, N. D., Vianna, J., Sousa, A. C., Alves, J. V., & Marques, M. C. (2017). Energy cost of iso-lated resistance exercises across low- to high-intensities. PloS one, 12(7), e0181311. [PubMed] [Crossref]

Spencer, M. R., & Gastin, P. B. (2001). Energy system contribution during 200- to 1500-m running in highly trained athletes. Medicine and science in sports and exercise, 33(1), 157–162. [PubMed] [Crossref]

Tortu, E., & Deliceoglu, G. (2024). Comparative Analysis of Energy System Demands and Performance Metrics in Professional Soccer Players: Running vs. Cycling Repeated Sprint Tests. Applied Sci-ences, 14(15), 6518. [Crossref]

Thompson, W. R. (2006). Worldwide survey reveals fitness trends for 2007. ACSM's Health & Fitness Journal, 10(6), 8-14.‏ [Crossref]

Downloads

Publicado

2025-05-23

Como Citar

Saleh, A. Y., & Al Husaen Aga, M. T. (2025). Um estudo do gasto energético (consumo de oxigénio, EPOC e lactato) a diferentes distâncias de corrida. Retos, 68, 716–731. https://doi.org/10.47197/retos.v68.116088

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.