Perfil in silico de ácidos fenólicos para prevenção de cálculos biliares: uma base para estudos in vitro sobre atividade física intensa e perda rápida de peso

Autores

  • Sridevi Rajendran SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu.
  • Chitra Vellapandian SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu.

DOI:

https://doi.org/10.47197/retos.v68.116454

Palavras-chave:

ADMET, metabolismo dos ácidos biliares, doença do cálculo biliar, encaixe molecular, ácidos fenólicos, atividade física, perda rápida de peso, medicina desportiva, ácido sinápico

Resumo

Contexto: A colelitíase é cada vez mais observada em indivíduos com perda de peso rápida ou stress físico elevado, como os atletas. As terapias existentes, como o ácido ursodesoxicólico, têm uma eficácia limitada, o que tem despertado o interesse por opções naturais mais seguras.
Objectivo: Avaliar o potencial anti-colelitíase de ácidos fenólicos seleccionados utilizando o docking molecular e o perfil farmacocinético.
Metodologia: Foram realizadas docking molecular, análise ADMET e simulações de dinâmica molecular para os ácidos sinápico, p-cumárico, cafeico e ferúlico, com foco em alvos envolvidos na regulação do colesterol e dos ácidos biliares (LXR, FXR, PPAR-γ, NPC1L1). As ferramentas utilizadas foram o AutoDock 4.2, SwissADME e GROMACS 2019.4.
Resultados: O ácido sinápico apresentou a ligação mais forte ao LXR (-6,65 kcal/mol), sugerindo um aumento da depuração do colesterol, enquanto o ácido p-cumárico apresentou uma interação significativa com o FXR (-4,86 kcal/mol), implicando um papel na regulação do ácido biliar. Ambos os compostos apresentaram uma ligação estável e uma farmacocinética favorável, com baixa toxicidade.
Conclusão: Os ácidos sinápico e p-cumárico parecem promissores para a prevenção de cálculos biliares, especialmente em indivíduos ativos ou com perda de peso rápida, justificando a necessidade de mais estudos in vitro, in vivo e clínicos.

Biografias do Autor

  • Sridevi Rajendran, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu.

    Departamento de Farmacologia, Faculdade de Farmácia SRM, Faculdade de Medicina e Ciências da Saúde, Instituto de Ciência e Tecnologia SRM, Kattankulathur, Chennai, Tamil Nadu.

  • Chitra Vellapandian, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu.

    Departamento de Farmacologia, Faculdade de Farmácia SRM, Faculdade de Medicina e Ciências da Saúde, Instituto de Ciência e Tecnologia SRM, Kattankulathur, Chennai, Tamil Nadu.

Referências

Lammert, F., Gurusamy, K., Ko, C. W., Miquel, J.-F., Méndez-Sánchez, N., Portincasa, P., van Erpecum, K. J., van Laarhoven, C. J., & Wang, D. Q.-H. . (2016). Gallstones. Nature Reviews Disease Primers, 2(1). https://doi.org/10.1038/nrdp.2016.24

Stinton, L. M., Myers, R. P., & Shaffer, E. A. (2010). Epidemiology of Gallstones. Gastroenterology Clinics, 39(2), 157–169. https://doi.org/10.1016/j.gtc.2010.02.003

Shabanzadeh, D. M., Skaaby, T., Sørensen, L. T., & Jørgensen, T. (2017). Screen-detected gallstone disease and cardiovascular disease. European Journal of Epidemiology, 32(6), 501–510. https://doi.org/10.1007/s10654-017-0263-x

Shabanzadeh, D. M., Sørensen, L. T., & Jørgensen, T. (2017). Association Between Screen-Detected Gall-stone Disease and Cancer in a Cohort Study. Gastroenterology, 152(8), 1965-1974.e1. https://doi.org/10.1053/j.gastro.2017.02.013

Zheng, Y., Xu, M., Heianza, Y., Ma, W., Wang, T., Sun, D., Albert, C. M., Hu, F. B., Rexrode, K. M., Manson, J. E., & Qi, L. (2018). Gallstone disease and increased risk of mortality: Two large prospective studies in US men and women. Journal of Gastroenterology and Hepatology, 33(11), 1925–1931. https://doi.org/10.1111/jgh.14264

Shi, C., Liu, X., Xie, Z., Sun, H., Hao, C., Xue, D., & Meng, X. (2023). Lifestyle factors and the risk of gall-stones: results from the national health and nutrition examination survey 2018–2020 and men-delian randomization analysis. Scandinavian Journal of Gastroenterology, 1–9. https://doi.org/10.1080/00365521.2023.2197093

Parra-Landazury, N., Cordova-Gallardo, J., & Méndez-Sánchez, N. (2021). Obesity and Gallstones. Vis-ceral Medicine, 37(5), 1–9. https://doi.org/10.1159/000515545

Lin, I-Ching., Yang, Y.-W., Wu, M.-F., Yeh, Y.-H., Liou, J.-C., Lin, Y.-L., & Chiang, C.-H. (2014). The associa-tion of metabolic syndrome and its factors with gallstone disease. BMC Family Practice, 15(1). https://doi.org/10.1186/1471-2296-15-138

Di Ciaula, A., Wang, D. Q.-H. ., & Portincasa, P. (2018). An update on the pathogenesis of cholesterol gall-stone disease. Current Opinion in Gastroenterology, 34(2), 71–80. https://doi.org/10.1097/mog.0000000000000423

Pathogenesis of cholesterol and pigment gallstones: An update. (2011). Clinics and Research in Hepa-tology and Gastroenterology, 35(4), 281–287. https://doi.org/10.1016/j.clinre.2011.01.009

Ilton, E. (2024, March 22). The Link Between Gallstones, Obesity, and Weight Loss. Every-dayHealth.com. https://www.everydayhealth.com/gallbladder/symptoms/link-between-gallstones-obesity-weight-loss/

Yang, H., Petersen, G. M., Roth, M.-P., Schoenfield, L. J., & Marks, J. W. (1992). Risk factors for gallstone formation during rapid loss of weight. Digestive Diseases and Sciences, 37(6), 912–918. https://doi.org/10.1007/bf01300390

Weinsier, R. L., & Ullmann, D. O. (1993). Gallstone Formation and Weight Loss. Obesity Research, 1(1), 51–56. https://doi.org/10.1002/j.1550-8528.1993.tb00008.x

Alizadeh Pahlavani, H., & Veisi, A. (2025). Possible consequences of the abuse of anabolic steroids on different organs of athletes. Archives of Physiology and Biochemistry, 1–18. https://doi.org/10.1080/13813455.2025.2459283

Johansson, K., Sundström, J., Marcus, C., Hemmingsson, E., & Neovius, M. (2013). Risk of symptomatic gallstones and cholecystectomy after a very-low-calorie diet or low-calorie diet in a commer-cial weight loss program: 1-year matched cohort study. International Journal of Obesity, 38(2), 279–284. https://doi.org/10.1038/ijo.2013.83

Yuksel Bicilioglu; Karakoyun, Miray; Emel Atas Berksoy; Anil, Murat (2017). Cholelithiasis Developing after Rapid Weight Loss in an Adolescent - ProQuest. 36-37. https://doi.org/10.4274/cayd.92005

Ribeiro, M. A., Tebar, G. K., Niero, H. B., & Pacheco, L. S. (2024). Biliary complications associated with weight loss, cholelithiasis and choledocholithiasis. World Journal of Gastrointestinal Pharma-cology and Therapeutics, 15(4). https://doi.org/10.4292/wjgpt.v15.i4.95647

John Hopkins Medicine. (2020). Gallstones. Johns Hopkins Medicine. https://www.hopkinsmedicine.org/health/conditions-and-diseases/gallstones

Festi, D., Montagnani, M., Azzaroli, F., Lodato, F., Mazzella, G., Roda, A., Di Biase, A. R., Roda, E., Simoni, P., & Colecchia, A. (2007). Clinical efficacy and effectiveness of ursodeoxycholic acid in cholestatic liver diseases. Current Clinical Pharmacology, 2(2), 155–177. https://doi.org/10.2174/157488407780598171

Ursodeoxycholic Acid. (2019). Singhealth.com.sg. https://www.singhealth.com.sg/patient-care/medicine/ursodeoxycholic-acid

Guarino, M. P. L., Cocca, S., Altomare, A., Emerenziani, S., & Cicala, M. (2013). Ursodeoxycholic acid therapy in gallbladder disease, a story not yet completed. World Journal of Gastroenterology : WJG, 19(31), 5029–5034. https://doi.org/10.3748/wjg.v19.i31.5029

1mg.com. (2021). Ursodeoxycholic Acid: View Uses, Side Effects and Medicines | 1mg. 1mg. https://www.1mg.com/generics/ursodeoxycholic-acid-210886

Mohammadine Moumou, Amani Tayebi, Abderrahmane Hadini, Noman, O. M., Abdulsalam Alhalmi, Hamza Ahmoda, Amrani, S., & Hicham Harnafi. (2025). Combining In Vitro, In Vivo, and In Silico Approaches to Explore the Effect of Ceratonia siliqua and Ocimum basilicum Rich Phenolic Formula on Lipid Metabolism and Plasma Lipoprotein Oxidation in Mice Fed a High-Fat Diet: A Follow-Up Study. Metabolites, 15(1), 36–36. https://doi.org/10.3390/metabo15010036

Kumar, N., & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24(e00370), e00370. https://doi.org/10.1016/j.btre.2019.e00370

Asma Arrout, Yassine El Ghallab, Yafout, M., Mohammed Rachid Lefriyekh, & Ait, A. (2024). Medicinal plants for gallstones: A cross-sectional survey of Moroccan patients. Phytomedicine Plus, 4(1), 100524–100524. https://doi.org/10.1016/j.phyplu.2024.100524

Chambers, K. F., Day, P. E., Aboufarrag, H. T., & Kroon, P. A. (2019). Polyphenol Effects on Cholesterol Metabolism via Bile Acid Biosynthesis, CYP7A1: A Review. Nutrients, 11(11), 2588. https://doi.org/10.3390/nu11112588

Ansari, M. A., Raish, M., Bin Jardan, Y. A., Ahmad, A., Shahid, M., Ahmad, S. F., Haq, N., Khan, M. R., & Bak-heet, S. A. (2021). Sinapic acid ameliorates D-galactosamine/lipopolysaccharide-induced fulmi-nant hepatitis in rats: Role of nuclear factor erythroid-related factor 2/heme oxygenase-1 pathways. World Journal of Gastroenterology, 27(7), 592–608. https://doi.org/10.3748/wjg.v27.i7.592

Chen, C. (2016). Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging. Oxidative Medicine and Cellular Longevity, 2016, 1–10. https://doi.org/10.1155/2016/3571614

Kannakazhi Kantari, S. A., Kanchi, S., Patnaik, B., & Agraharam, A. (2024). Computational Exploration of Phenolic Compounds from Endophytic Fungi as α-Glucosidase Inhibitors for Diabetes Man-agement. ACS Omega, 10(1), 1279–1292. https://doi.org/10.1021/acsomega.4c08872

Horowitz, J. F., & Klein, S. (2000). Lipid metabolism during endurance exercise. The American Journal of Clinical Nutrition, 72(2), 558S563S. https://doi.org/10.1093/ajcn/72.2.558s

Zhu, J.-Y., & Guo, L. (2024). Exercise-regulated lipolysis: Its role and mechanism in health and diseases. Journal of Advanced Research. https://doi.org/10.1016/j.jare.2024.11.031

Thompson, D., Karpe, F., Lafontan, M., & Frayn, K. (2012). Physical Activity and Exercise in the Regula-tion of Human Adipose Tissue Physiology. Physiological Reviews, 92(1), 157–191. https://doi.org/10.1152/physrev.00012.2011

See Young Lee, Sung Ill Jang, Jae Hee Cho, Min Young Do, Su Yeon Lee, Choi, A., Hye Sun Lee, Yang, J., & Dong Ki Lee. (2024). Gallstone Dissolution Effects of Combination Therapy with n-3 Polyun-saturated Fatty Acids and Ursodeoxycholic Acid: A Randomized, Prospective, Preliminary Clin-ical Trial. Gut and Liver. https://doi.org/10.5009/gnl230494

Portincasa, P., Di Ciaula, A., Bonfrate, L., & Wang, D. Q. (2012). Therapy of gallstone disease: What it was, what it is, what it will be. World journal of gastrointestinal pharmacology and therapeu-tics, 3(2), 7-20. https://doi.org/10.4292/wjgpt.v3.i2.7

Lazaridis, K. N., Gores, G. J., & Lindor, K. D. (2001). Ursodeoxycholic acid “mechanisms of action and clinical use in hepatobiliary disorders.” Journal of Hepatology, 35(1), 134–146. https://doi.org/10.1016/S0168-8278(01)00092-7

Shahidi, F., & Peng, H. (2018). Bioaccessibility and bioavailability of phenolic compounds. Journal of Food Bioactives, 4. https://doi.org/10.31665/jfb.2018.4162

Downloads

Publicado

25-06-2025

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.

Como Citar

Rajendran, S., & Vellapandian, C. (2025). Perfil in silico de ácidos fenólicos para prevenção de cálculos biliares: uma base para estudos in vitro sobre atividade física intensa e perda rápida de peso. Retos, 68, 2042-2057. https://doi.org/10.47197/retos.v68.116454