Peculiarities of the body component composition and microcirculation of qualified divers
DOI:
https://doi.org/10.47197/retos.v62.107322Keywords:
springboard, diving tower, capillary blood flow, adipose tissueAbstract
One of the important aspects of improving the effectiveness of training qualified divers is understanding the peculiarities of body component composition and the state of microcirculation. The aim of this study was to investigate the component body composition and microcirculation peculiarities of qualified divers diving from different types of gymnastic equipment. The study sample included 30 qualified divers, consisting of 17 girls and 13 boys aged 13 to 18 years. Body composition was assessed using bioimpedance analysis, and the functional state of the microcirculatory system was evaluated through laser Doppler flowmetry. The results indicated that divers who utilized the 10-meter tower exhibited a statistically significant decrease in adipose tissue content and an increase in fat-free mass and relative muscle mass compared to athletes in other diving disciplines. Additionally, a high level of tissue perfusion and microvascular reactivity was observed among the athletes. These findings are crucial for assessing and enhancing the training effectiveness of qualified diving athletes.
References
Ackland, T. R., Lohman, T. G., Sundgot-Borgen, J., Maughan, R. J., Meyer, N. L., Stewart, A. D., & Müller, W. (2012). Current status of body composition assessment in sport: review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the I.O.C. Medical Commission. Sports Medicine, 42, 227-249. http://dx.doi.org/10.2165/11597140-000000000-00000
Báez-Suárez, A., & Moreham, B. L. (2024). Incidencia de lesiones en deportistas de alto rendimiento de “Stand Up Pad-dle” (Incidence of Injuries in High-Performance Stand Up Paddle Athletes). Retos, 56, 258–264. https://doi.org/10.47197/retos.v56.103586
Cracowski, J. L., & Roustit, M. (2020). Human skin microcirculation. Comprehensive Physiology, 10(3), 1105-1154. http://dx.doi.org/10.1002/cphy.c190008
Montero, D., Walther, G., Diaz-Cañestro, C., Pyke, K.E., Padilla, J. (2015). Microvascular Dilator Function in Ath-letes: A Systematic Review and Meta-analysis. Medicine and Science in Sports and Exercise, 47(7):1485-1494. doi: 10.1249/MSS.0000000000000567
Dvurekova, E. A. (2018) Laser Doppler flowmetry in the diagnosis of tissue microcirculation in representatives of athlet-ics. Human. Sport. Medicine, 18(5), 41-45. https://doi.org/10.14529/hsm18s06 (In Russian)
Franzoni, F., Galetta, F., Morizzo, C., Lubrano, V., Palombo, C., Santoro, G., Ferrannini, E., Quiñones-Galvan, A. (2004). Effects of age and physical fitness on microcirculatory function. Clinical Science, 106(3):329-335. doi: 10.1042/CS20030229
Gulevich, A. V., & Geychenko, L. М. (2019). Analysis of spatial and temporal characteristics of the phase of exit to the water surface when performing a starting jump in swimming. In E. K. Sychova (Ed.), Results of scientific research of sci-entists at the Kuleshov MSU: Materials of scientific and methodological conference (pp. 183-184). Mogilev, Belarus: A.A. Ku-leshov Mogilev State University. (In Russian)
Hendrickse, P., & Degens, H. (2019). The role of the microcirculation in muscle function and plasticity. Journal of Muscle Research and Cell Motility, 40(2), 127-140. https://doi.org/10.1007/s10974-019-09520-2
Ishiguro, N., Kanehisa, H., Miyatani, M., Masuo, Y., & Fukunaga, T. (2006). Applicability of segmental bioelectrical impedance analysis for predicting trunk skeletal muscle volume. Journal of Applied Physiology, 100(2), 572-578. https://doi.org/10.1152/japplphysiol.00094.2005
Janura, M., Cabell, L., Svoboda, Z., & Elfmark, M. (2016). Evaluation of explosive power performance in ski jumpers and nordic combined competitive athletes: A 19-year study. The Journal of Strength and Conditioning Research, 30(1), 71-80. http://dx.doi.org/10.1519/JSC.0000000000001046
Krupatkin, A. I. (2005). Evaluation of volumetric parameters of total, nutritive and shunt blood flow of the skin micro-vascular channel using laser Doppler flowmetry. Human Physiology, 31(1), 114-119. (In Russian)
Krupatkin, A. I., & Sidorov, V. V. (2016). Functional diagnostics of the state of microcirculatory-tissue systems: Oscillations, information, nonlinearity: Guidelines for Doctors. Moscow, Russia: Librikom. (In Russian)
Ma, C., Zhao, Y., Ding, X., & Gao, B. (2022). Hypoxic training ameliorates skeletal muscle microcirculation vascular function in a Sirt3-dependent manner. Frontiers in Physiology, 18, 921763. http://dx.doi.org/10.3389/fphys.2022.921763
Meng, Z., Gao, H., Li, T., Ge, P.,. Xu, Y., & Gao, B. (2021). Effects of eight weeks altitude training on the aerobic capacity and microcirculation function in trained rowers. High Altitude Medicine & Biology, 22(1), 24-31. http://dx.doi.org/10.1089/ham.2020.0059
Mu, C., Liu, Y., & Mihuta, I. Y. (2023). Biomechanical movement profile of highly skilled athletes in diving. World Sport, 3(92), 44-50. (In Russian)
Oggiano, L., & Sætran, L. (2009). Effects of body weight on ski jumping performances under the new FIS Rules (P3). In V. M. Estivalet, & P. Brisson (Eds.), The Engineering of Sport No. 7 (vol. 1, pp. 1-9). Paris, France: Springer.
Ostachowska-Gąsior, A., Piwowar, M., & Zając, J. (2021). Segmental phase angle and body composition fluctuation of elite ski jumpers between summer and winter FIS competitions. International Journal of Environmental Research and Pub-lic Health, 18(9), 4741. http://dx.doi.org/10.3390/ijerph18094741
Popova, I. E. (2020). Fundamental physical parameters required in diving. In Innovative transformations in the sphere of physical culture, sport and tourism: Collection of Materials of the XXIII All-Russian scientific and practical conference (pp. 321-324). Novomikhailovsky, Russia: Rostov State Economic University “RINH”. (In Russian)
Rausavljević, N., Spasić, M., & Jošt, B. (2012). Mechanics model of the relationship between the body mass of ski jump-ers and length of the ski jump. Kinesiologia Slov, 18(1), 14-20.
Robinson, A. T., Fancher, I. S., Mahmoud, A. M., & Phillips, S. A. (2018). Microvascular vasodilator plasticity after acute exercise. Exercise and Sport Sciences Reviews, 46(1), 48-55. https://doi.org/10.1249/jes.0000000000000130
Sedochenko, S. V., Savinkova, O. N., & Popova, I. E. (2022). Study of bilateral stabilometric parameters of skilled di-vers. Human. Sport. Medicine, 22(S1), 23-27. (In Russian)
Solikhin, M. N., Fauzi, F., Sulistiyono, S., Setiawan, C., & Fauzi, L. A. (2024). Explorando la experiencia beneficiosa de la actividad recreativa de apnea para principiantes (Exploring Beginner Free diver’s Experience of Benefit Recreation-al Freediving Activity). Retos, 57, 271–278. https://doi.org/10.47197/retos.v57.101365
Szanto, S., Mody, T., Gyurcsik, Z., Babjak, L. B., Somogyi, V., Barath, B., Varga, A., Matrai, A. A., & Nemeth, N. (2021). Alterations of selected hemorheological and metabolic parameters induced by physical activity in untrained men and sportsmen. Metabolites, 11(12), 870. http://dx.doi.org/10.3390/metabo11120870
Tønnessen, E., Rasdal, V., Svendsen, I. S., & Haugen, T. (2016). Concurrent development of endurance capacity and explosiveness: training characteristics of world-class nordic combined athletes. International Journal of Sports Physiology and Performance, 11(5), 643-651. http://dx.doi.org/10.1123/ijspp.2015-0309
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Retos

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.
 
						 
							