Cold water immersion as an effective recovery method: its impact on heart rate and lactate levels post exercise

Authors

  • Muhammad Kharis Fajar Universitas Negeri Surabaya https://orcid.org/0000-0003-2808-7411
  • Agus Hariyanto Universitas Negeri Surabaya
  • Endang Sri Wahjuni Universitas Negeri Surabaya
  • Sareena Hanim Hamzah Universiti Malaya
  • Wijono Wijono Universitas Negeri Surabaya
  • Rizky Muhammad Sidik Universitas Negeri Surabaya https://orcid.org/0009-0003-1291-917X
  • Fifit Yeti Wulandari Universitas Negeri Surabaya
  • Abdul Hafidz Universitas Negeri Surabaya
  • Bayu Agung Pramono Universitas Negeri Surabaya
  • Yetty Septiani Mustar Universitas Negeri Surabaya
  • I Dewa Made Aryananda Wijaya Kusuma Universitas Negeri Surabaya https://orcid.org/0000-0002-4939-7294

DOI:

https://doi.org/10.47197/retos.v61.108794

Keywords:

recovery strategy, cold water immersion, lactate

Abstract

The study’s purpose. This study aims to analyze the effect of the recovery method using cold water immersion (CWI) with different temperatures and administration times. Material and Methods. Thirty-two student-athletes participated in this study. They were divided into four groups, carried out acute physical training with an intensity of 95%, and were given recovery treatments such as CWI during and after physical exercise CWI with temperature 150 Celsius (CWI DP 15), CWI with temperature 150 Celsius after practice physical (CWI P 15), CWI with temperature 100 Celsius after practice physical (CWI P 10), and the Static Rest (SR) group. Analysis descriptive, paired samples t-test, and two-way ANOVA direction used in data analysis. This is that all data were normally distributed (p ≥ 0.05) and homogeneous (p ≤ 0.05). The results of the heart rate analysis found that no There is a significant difference​ between group CWI DP, CWI P 15, and CWI P 10 with the current control group Exercise phase. Meanwhile lactate, there is a difference in concentration of lactate in the CWI DP 15 group against a control group in phase Immediately Post-exercise with a p-value of 0.021; the 10min post-exercise phase is difference significant concentration lactate groups CWI DP15, CWI P15, and CWI P 10 against control group with p- value 0.001, in the 120min post-exercise phase there is difference lactate group CWI P 15 against control group with The p-value is 0.001, in the 24 hours post-exercise phase there is difference concentration lactate CWI DP 15 group against control with p-value 0.0024. Cold Water Immersion (CWI) has been shown to significantly accelerate heart rate recovery (HRR), reduce blood lactate levels, and improve athlete performance, indicating that it may be beneficial in recovery protocols.

Keywords: Recovery Strategy, Cold Water Immersion, Lactate

References

Allan, R. (2017). Postexercise cold water immersion modulates skeletal muscle PGC-1α mRNA expression in immersed and nonimmersed limbs: Evidence of systemic regulation. Journal of Applied Physiology, 123(2), 451–459. https://doi.org/10.1152/japplphysiol.00096.2017

Amir, N. H., Hashim, H. A., & Saha, S. (2017). The effect of single bout of 15 minutes of 15-degree celsius cold water immersion on delayed-onset muscle soreness indicators. IFMBE Proceedings, 58, 45–51. https://doi.org/10.1007/978-981-10-3737-5_10

Barnett, A. (2006). Using recovery modalities between training sessions in elite athletes: does it help? Sports Medicine (Auckland, N.Z.), 36(9), 781–796. https://doi.org/10.2165/00007256-200636090-00005

Bastos, F. N., Vanderlei, L. C. M., Nakamura, F. Y., Bertollo, M., Godoy, M. F., Hoshi, R. A., Junior, J. N., & Pastre, C. M. (2012). Effects of cold water immersion and active recovery on post-exercise heart rate variability. International Journal of Sports Medicine, 33(11), 873–879. https://doi.org/10.1055/s-0032-1301905

Bieuzen, F., Bleakley, C. M., & Costello, J. T. (2013). Contrast Water Therapy and Exercise Induced Muscle Damage: A Systematic Review and Meta-Analysis. PLoS ONE, 8(4), e62356. https://doi.org/10.1371/journal.pone.0062356

Bleakley, C. M., & Davison, G. W. (2010). What is the biochemical and physiological rationale for using cold-water immersion in sports recovery? A systematic review. British Journal of Sports Medicine, 44(3), 179–187. https://doi.org/10.1136/bjsm.2009.065565

Broatch, J. R., Petersen, A., & Bishop, D. J. (2014). Postexercise Cold Water Immersion Benefits Are Not Greater than the Placebo Effect. Medicine & Science in Sports & Exercise, 46(11), 2139–2147. https://doi.org/10.1249/MSS.0000000000000348

Brophy-Williams, N., Landers, G., & Wallman, K. (2011). Effect of immediate and delayed cold water immersion after a high intensity exercise session on subsequent run performance. Journal of Sports Science & Medicine, 10(4), 665–670.

Daanen, H. A. M., Lamberts, R. P., Kallen, V. L., Jin, A., & Van Meeteren, N. L. U. (2012). A systematic review on heart-rate recovery to monitor changes in training status in athletes. International Journal of Sports Physiology and Performance, 7(3), 251–260. https://doi.org/10.1123/IJSPP.7.3.251

Dellal, A., Casamichana, D., Castellano, J., Haddad, M., Moalla, W., & Chamari, K. (2015). Cardiac parasympathetic reactivation in elite soccer players during different types of traditional high-intensity training exercise modes and specific tests: Interests and limits. Asian Journal of Sports Medicine, 6(4), 1–10. https://doi.org/10.5812/asjsm.25723

Eigendorf, J., May, M., Friedrich, J., Engeli, S., Maassen, N., Gros, G., & Meissner, J. D. (2018). High intensity high volume interval training improves endurance performance and induces a nearly complete slow-to-fast fiber transformation on the mRNA level. Frontiers in Physiology, 9(MAY). https://doi.org/10.3389/fphys.2018.00601

Gill, N. D. (2006). Effectiveness of post-match recovery strategies in rugby players. British Journal of Sports Medicine, 40(3), 260–263. https://doi.org/10.1136/bjsm.2005.022483

Gocentas, A., Landõr, A., & Kriščiūnas, A. (2018). Heart Rate Recovery Changes during Competition Period in High-Level Basketball Players. Baltic Journal of Sport and Health Sciences, 1(80), 11–16. https://doi.org/10.33607/bjshs.v1i80.334

Halson, S. L. (2014). Monitoring Training Load to Understand Fatigue in Athletes. Sport Med, 44(2), 139–147. https://doi.org/10.1007/s40279-014-0253-z

Iacovino, L. G., Rossi, M. L., Stefano, G. Di, Rossi, V., Binda, C., Brigotti, M., Tomaselli, F., Pasti, A. Pietro, Piaz, F. D., Cerini, S., & Hochkoeppler, A. (2022). Allosteric transitions of rabbit skeletal muscle lactate dehydrogenase induced by pH-dependent dissociation of the tetrameric enzyme. Biochimie, 199, 23–35. https://api.semanticscholar.org/CorpusID:248043845

Kellmann, M., Bertollo, M., Bosquet, L., Brink, M., Coutts, A. J., Duffield, R., Erlacher, D., Halson, S. L., Hecksteden, A., Heidari, J., Kallus, K. W., Meeusen, R., Mujika, I., Robazza, C., Skorski, S., Venter, R., & Beckmann, J. (2018). Recovery and Performance in Sport: Consensus Statement. International Journal of Sports Physiology and Performance, 13(2), 240–245. https://doi.org/10.1123/ijspp.2017-0759

Lee, C. M., & Mendoza, A. (2012). Dissociation of heart rate variability and heart rate recovery in well-trained athletes. European Journal of Applied Physiology, 112(7), 2757–2766. https://doi.org/10.1007/s00421-011-2258-8

Lee, S., Choi, Y., Jeong, E., Park, J., Kim, J., Tanaka, M., & Choi, J. (2023). Physiological significance of elevated levels of lactate by exercise training in the brain and body. Journal of Bioscience and Bioengineering, 135(3), 167–175. https://doi.org/10.1016/j.jbiosc.2022.12.001

Leeder, J., Gissane, C., Van Someren, K., Gregson, W., & Howatson, G. (2012). Cold water immersion and recovery from strenuous exercise: A meta-analysis. British Journal of Sports Medicine, 46(4), 233–240. https://doi.org/10.1136/bjsports-2011-090061

Manojlović, V., & Erčulj, F. (2019). Using blood lactate concentration to predict muscle damage and jump performance response to maximal stretch-shortening cycle exercise. The Journal of Sports Medicine and Physical Fitness, 59(4), 581–586. https://doi.org/10.23736/S0022-4707.18.08346-9

Martínez-Lagunas, V., Niessen, M., & Hartmann, U. (2014). Women’s football: Player characteristics and demands of the game. Journal of Sport and Health Science, 3(4), 258–272. https://doi.org/10.1016/j.jshs.2014.10.001

Munandar, R. A., Setijono, H., & Widyah Kusnanik, N. (2021). The Effect of Tabata Training and High Intensity Interval Training toward The Increasing of Strength, and Speed. International Journal of Multicultural and Multireligious Understanding, 8(10), 80. https://doi.org/10.18415/ijmmu.v8i10.3007

Nixdorf, R., Nixdorf, I., & Beckmann, J. (2018). Stress, Underrecovery, and Health Problems in Athletes (pp. 119–131). https://doi.org/10.4324/9781315268149-9

Paquette, M., Le Blanc, O., Lucas, S. J. E., Thibault, G., Bailey, D. M., & Brassard, P. (2017). Effects of submaximal and supramaximal interval training on determinants of endurance performance in endurance athletes. Scandinavian Journal of Medicine & Science in Sports, 27(3), 318–326. https://doi.org/10.1111/sms.12660

Parouty, J., Al Haddad, H., Quod, M., Leprêtre, P. M., Ahmaidi, S., & Buchheit, M. (2010). Effect of cold water immersion on 100-m sprint performance in well-trained swimmers. European Journal of Applied Physiology, 109(3), 483–490. https://doi.org/10.1007/s00421-010-1381-2

Peiffer, J. J., Abbiss, C. R., Watson, G., Nosaka, K., & Laursen, P. B. (2009). Effect of cold-water immersion duration on body temperature and muscle function. Journal of Sports Sciences, 27(10), 987–993. https://doi.org/10.1080/02640410903207424

Poignard, M., Guilhem, G., Jubeau, M., Martin, E., Giol, T., Montalvan, B., & Bieuzen, F. (2023). Cold-water immersion and whole-body cryotherapy attenuate muscle soreness during 3 days of match-like tennis protocol. European Journal of Applied Physiology, 123(9), 1895–1909. https://doi.org/10.1007/s00421-023-05190-8

Pournot, H., Bieuzen, F., Duffield, R., Lepretre, P.-M., Cozzolino, C., & Hausswirth, C. (2011). Short term effects of various water immersions on recovery from exhaustive intermittent exercise. European Journal of Applied Physiology, 111(7), 1287–1295. https://doi.org/10.1007/s00421-010-1754-6

Putrov, S., Omelchuk, O., Milkina, O., & Napalkova, T. (2021). Features of physical training of students based on the use of the method of interval training according to the “Tabata” system. Scientific Journal of National Pedagogical Dragomanov University. Series 15. Scientific and Pedagogical Problems of Physical Culture (Physical Culture and Sports), 11(11(143)), 119–124. https://doi.org/10.31392/npu-nc.series15.2021.11(143).25

Roberts, L. A., Nosaka, K., Coombes, J. S., & Peake, J. M. (2014). Cold water immersion enhances recovery of submaximal muscle function after resistance exercise. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 307(8), R998–R1008. https://doi.org/10.1152/ajpregu.00180.2014

Sánchez-Ureña, B., Martínez-Guardado, I., Crespo, C., Timón, R., Calleja-González, J., Ibañez, S. J., & Olcina, G. (2017). The use of continuous vs. intermittent cold water immersion as a recovery method in basketball players after training: A randomized controlled trial. The Physician and Sportsmedicine, 00913847.2017.1292832. https://doi.org/10.1080/00913847.2017.1292832

Sánchez–Ureña, B. (2017). The use of continuous vs. intermittent cold water immersion as a recovery method in basketball players after training: a randomized controlled trial. Physician and Sportsmedicine, 45(2), 134–139. https://doi.org/10.1080/00913847.2017.1292832

Sousa, C. A., Zourdos, M. C., Storey, A. G., & Helms, E. R. (2024). The Importance of Recovery in Resistance Training Microcycle Construction. Journal of Human Kinetics , 91, 205–223. https://doi.org/10.5114/jhk/186659

Stanley, J., Peake, J. M., Coombes, J. S., & Buchheit, M. (2014). Central and peripheral adjustments during high-intensity exercise following cold water immersion. European Journal of Applied Physiology, 114(1), 147–163. https://doi.org/10.1007/s00421-013-2755-z

Tabben, M. (2018). Cold water immersion enhanced athletes’ wellness and 10-m short sprint performance 24-h after a simulated mixed martial arts combat. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.01542

Takei, N., Takahashi, K., Kakinoki, K., & Hatta, H. (2018). Relationships between rate of increase in post-exercise blood lactate concentration and performance of short-term high-intensity exercise in track athletes. The Journal of Physical Fitness and Sports Medicine, 7(5), 253–259. https://doi.org/10.7600/jpfsm.7.253

Terrados, N., Mielgo-Ayuso, J., Delextrat, A., Ostojic, S. M., & Calleja-Gonzalez, J. (2019). Dietetic-nutritional, physical and physiological recovery methods post-competition in team sports. The Journal of Sports Medicine and Physical Fitness, 59(3), 415–428. https://doi.org/10.23736/S0022-4707.18.08169-0

Tripp, T. R., Caswell, A. M., Aboodarda, S. J., & MacInnis, M. J. (2024). The Effect of Duration on Performance and Perceived Fatigability During Acute High-Intensity Interval Exercise in Young, Healthy Males and Females. Scandinavian Journal of Medicine & Science in Sports, 34(7), e14692. https://doi.org/10.1111/sms.14692

Vaile, J., O’Hagan, C., Stefanovic, B., Walker, M., Gill, N., & Askew, C. D. (2011). Effect of cold water immersion on repeated cycling performance and limb blood flow. British Journal of Sports Medicine, 45(10), 825–829. https://doi.org/10.1136/bjsm.2009.067272

Vaile, Joanna, Halson, S., Gill, N., & Dawson, B. (2008a). Effect of cold water immersion on repeat cycling performance and thermoregulation in the heat. Journal of Sports Sciences, 26(5), 431–440. https://doi.org/10.1080/02640410701567425

Vaile, Joanna, Halson, S., Gill, N., & Dawson, B. (2008b). Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. European Journal of Applied Physiology, 102(4), 447–455. https://doi.org/10.1007/s00421-007-0605-6

Watson, A. M., Brickson, S. L., Prawda, E. R., & Sanfilippo, J. L. (2017). Short-Term Heart Rate Recovery Is Related To Aerobic Fitness In Elite Intermittent Sport Athletes. Journal of Strength and Conditioning Research, 31(4), 1055–1061.

Weenink, R. P., & Wingelaar, T. T. (2021). The Circulatory Effects of Increased Hydrostatic Pressure Due to Immersion and Submersion. Frontiers in Physiology, 12(July), 10–13. https://doi.org/10.3389/fphys.2021.699493

White, G. E., Rhind, S. G., & Wells, G. D. (2014). The effect of various cold-water immersion protocols on exercise-induced inflammatory response and functional recovery from high-intensity sprint exercise. European Journal of Applied Physiology, 114(11), 2353–2367. https://doi.org/10.1007/s00421-014-2954-2

Wilcock, I. M., Cronin, J. B., & Hing, W. A. (2006). Physiological response to water immersion: A method for sport recovery? Sports Medicine, 36(9), 747–765. https://doi.org/10.2165/00007256-200636090-00003

Xiao, F., Kabachkova, A. V., Jiao, L., Zhao, H., & Kapilevich, L. V. (2023). Effects of cold water immersion after exercise on fatigue recovery and exercise performance--meta analysis. Frontiers in Physiology, 14(January), 1–15. https://doi.org/10.3389/fphys.2023.1006512

Yang, Y., Chen, S. C., Yang, W. T., Kuo, J. T., & Chien, K. Y. (2019). Cold water immersion recovery strategy increases blood pressure levels after high-intensity intermittent exercise. Journal of Sports Medicine and Physical Fitness, 59(11), 1925–1933. https://doi.org/10.23736/S0022-4707.19.09771-8

Yankouskaya, A., Williamson, R., Stacey, C., Totman, J. J., & Massey, H. (2023). Short-Term Head-Out Whole-Body Cold-Water Immersion Facilitates Positive Affect and Increases Interaction between Large-Scale Brain Networks. Biology, 12(2). https://doi.org/10.3390/biology12020211.

Downloads

Published

01-12-2024

Issue

Section

Original Research Article

How to Cite

Fajar, M. K., Hariyanto, A., Wahjuni, E. S., Hamzah, S. H., Wijono, W., Sidik, R. M. ., Wulandari, F. Y. ., Hafidz, A. ., Pramono, B. A. ., Mustar, Y. S. ., & Kusuma, I. D. M. A. W. . (2024). Cold water immersion as an effective recovery method: its impact on heart rate and lactate levels post exercise. Retos, 61, 440-447. https://doi.org/10.47197/retos.v61.108794