A carga máxima no volante para avaliar o desempenho: validação e reprodutibilidade na sentadilla

Autores

DOI:

https://doi.org/10.47197/retos.v62.106921

Palavras-chave:

programação, força, sobrecarga excêntrica, perfil força-velocidade, nível de força

Resumo

Este trabalho analisou o conceito de carga máxima no volante (MLF) como um valor de rendimento máximo dinâmico no exercício de media sentado no volante. Veinte personas fisicamente ativa a participação neste estúdio. A carga de MLF foi calculada através da relação exponencial da aceleração-momento médio de inércia angular concêntrica no ponto em que a primeira derivada era inferior a 1 unidade. A validade foi analisada estudando a associação entre a MLF e o rendimento em sprint (velocidade máxima) e o salto (salto com movimento, drop jump, saltos repetidos a 30”, rigidez vertical e o índice reativo de força). A fiabilidade do teste-reteste foi analisada após a sessão de quarta e oitava. O MFL mostrou uma associação significativa de moderada a muito longa com a velocidade de sprint, a altura de salto, a rigidez de drop jump e o índice de força reativa. A análise teste-reteste revelou uma excelente fiabilidade (coeficiente de correlação intraclasse = 0,91) e uma boa fiabilidade absoluta (coeficiente de variação, entre quatro (4,2%) e entre duas (3,9%) sessões de familiarização).

Referências

Atkinson, G., & Nevill, A. M. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports medicine (Auckland, N.Z.), 26(4), 217–238.

Beato, M., Fleming, A., Coates, A., & Dello Iacono, A. (2021). Validity and reliability of a flywheel squat test in sport. Journal of Sports Sciences, 39(5), 482–488. https://doi.org/10.1080/02640414.2020.1827530

Beato, M., Maroto-Izquierdo, S., Hernández-Davó, J. L., & Raya-González, J. (2021). Flywheel Training Periodization in Team Sports. Frontiers in Physiology, 12(November), 1–6. https://doi.org/10.3389/fphys.2021.732802

Berg, H. E., & Tesch, P. A. (1994). A gravity-independent ergometer to be used for resistance training in space. Aviation Space and Environmental Medicine, 65(8), 752–756.

Berg, H. E., & Tesch, P. A. (1998). Force and power characteristics of a resistive exercise device for use in space. Acta Astronautica, 42(1), 219–230. https://doi.org/10.1016/S0094-5765(98)00119-2

Caderby, T., & Dalleau, G. (2018). A simple method for measuring lower limb stiffness in hopping. In Biomechanics of Training and Testing: Innovative Concepts and Simple Field Methods. https://doi.org/10.1007/978-3-319-05633-3_6

Carroll, K. M., Wagle, J. P., Sato, K., Taber, C. B., Yoshida, N., Bingham, G. E., & Stone, M. H. (2019). Characterising overload in inertial flywheel devices for use in exercise training. Sports Biomechanics, 18(4), 390–401. https://doi.org/10.1080/14763141.2018.1433715

Çetin, O., Akyildiz, Z., Demirtaş, B., Sungur, Y., Clemente, F. M., Cazan, F., & Ardigò, L. P. (2022). Reliability and validity of the multi-point method and the 2-point method’s variations of estimating the one-repetition maximum for deadlift and back squat exercises. PeerJ, 10. https://doi.org/10.7717/peerj.13013

Cormack, S. J., Newton, R. U., McGulgan, M. R., & Doyle, T. L. A. (2008). Reliability of measures obtained during single and repeated countermovement jumps. International journal of sports physiology and performance, 3(2), 131–144. https://doi.org/10.1123/IJSPP.3.2.131

de Hoyo, M., Sañudo, B., Carrasco, L., Domínguez-Cobo, S., Mateo-Cortes, J., Cadenas-Sánchez, M. M., & Nimphius, S. (2015). Effects of traditional versus horizontal inertial flywheel power training on common sport-related tasks. Journal of human kinetics, 47(1), 155-167. https://doi.org/10.1515/hukin-2015-0071.

de Keijzer, K. L., Gonzalez, J. R., & Beato, M. (2022). The effect of flywheel training on strength and physical capacities in sporting and healthy populations: An umbrella review. In PLoS ONE (Bd. 17, Nummer 2 February). Public Library of Science. https://doi.org/10.1371/journal.pone.0264375

Grgic, J., Lazinica, B., Schoenfeld, B. J., & Pedisic, Z. (2020). Test–Retest Reliability of the One-Repetition Maximum (1RM) Strength Assessment: a Systematic Review. In Sports Medicine - Open (Bd. 6, Nummer 1). Springer. https://doi.org/10.1186/s40798-020-00260-z

Hopkins, W. G. (2015). Spreadsheets for Analysis of Validity and Reliability. Sportscience, 39, 16–42.

Kasper, K. (2019). Sports Training Principles. Current Sports Medicine Reports, 18(4), 95–96. https://doi.org/10.1249/JSR.0000000000000576

Kawamori N, H. G. (2004). The optimal training load for the development of muscular power. J Strength Cond Res, 18(3), 675-84. https://doi.org/10.1519/1533-4287(2004)18<675:TOTLFT>2.0.CO;2.

Kraemer, W. J., & Ratamess, N. A. (2004). Fundamentals of Resistance Training: Progression and Exercise Prescription. Medicine and Science in Sports and Exercise, 36(4), 674–688. https://doi.org/10.1249/01.MSS.0000121945.36635.61

Kraemer, W. J., Ratamess, N. A., Flanagan, S. D., Shurley, J. P., Todd, J. S., & Todd, T. C. (2017). Understanding the Science of Resistance Training: An Evolutionary Perspective. Sports Medicine, 47(12), 2415–2435. https://doi.org/10.1007/s40279-017-0779-y

Loturco, I., Suchomel, T., Bishop, C., Kobal, R., Pereira, L. A., & McGuigan, M. (2019). One-repetition-maximum measures or maximum bar-power output: Which is more related to sport performance? International Journal of Sports Physiology and Performance, 14(1), 33–37. https://doi.org/10.1123/ijspp.2018-0255

Maloney, S. J., Richards, J., Jelly, L., & Fletcher, I. M. (2019). Unilateral stiffness interventions augment vertical stiffness and change of direction speed. Journal of Strength and Conditioning Research, 33(2), 372–379. https://doi.org/10.1519/JSC.0000000000002006

Maroto-Izquierdo, S., Bautista, I., & Rivera, F. (2020). Post-activation performance enhancement (PAPE) after a single-bout of high-intensity flywheel resistance training. Biology of Sport, 343–350. https://doi.org/10.5114/biolsport.2020.96318

Martinez-Aranda, L. M. M., & Fernandez-Gonzalo, R. (2017). Effects of inertial setting on power, force, work, and eccentric overload during flywheel resistance exercise in women and men. Journal of Strength and Conditioning Research, 31(6), 1653–1661. https://doi.org/10.1519/JSC.0000000000001635

McErlain-Naylor, S. A., & Beato, M. (2021). Concentric and eccentric inertia–velocity and inertia–power relationships in the flywheel squat. Journal of Sports Sciences, 39(10), 1136–1143. https://doi.org/10.1080/02640414.2020.1860472.

Maloney, S. J., Richards, J., Jelly, L., & Fletcher, I. M. (2019). Unilateral stiffness interventions augment vertical stiffness and change of direction speed. Journal of Strength and Conditioning Research, 33(2), 372-379. https://doi.org/10.1519/JSC.0000000000002006.

Muñoz-López, A., Floria, P., Sañudo, B., Pecci, J., Carmona, J., & Pozzo, M. (2021). The Maximum Flywheel Load : A Novel Index to Monitor Loading Intensity of Flywheel Devices. Sensors, 23, 8124–16. https://doi.org/10.3390/s21238124

Muñoz-López, A., Fonseca, F., Ramirez-Campillo, R., Gantois, P., Nuñez, F. J., & Nakamura, F. Y. (2021). The use of real-time monitoring during flywheel resistance training programs: how can we measure the eccentric overload? A systematic review and meta-analysis. Biology of Sport, 639–652.

Muñoz-López, A., Galiano, C., Nuñez, F. J., & Floría, P. (2022). The flywheel device shaft shape determines force and velocity profiles in the half squat exercise. Journal of Human Kinetics, 81(January), 15–25. https://doi.org/10.2478/hukin-2022-0002

Muñoz-López, A., Pozzo, M., & Floria, P. (2021). Real-time mechanical responses to overload and fatigue using a flywheel training device. Journal of Biomechanics, 121, 110429. https://doi.org/10.1016/j.jbiomech.2021.110429

Nuñez, F. J., De Hoyo, M., López, A. M., Sañudo, B., Otero-Esquina, C., Sanchez, H., & Gonzalo-Skok, O. (2019). Eccentric-concentric ratio: a key factor for defining strength training in soccer. International Journal of Sports Medicine, 40(12), 796-802. https://doi.org/10.1055/a-0977-5478.

Pecci Barea, F. J., Muñoz López, A., Jones, P. A., & Sañudo Corrales, F. D. B. (2023). Effects of 6 weeks in-season flywheel squat resistance training on strength, vertical jump, change of direction and sprint performance in professional female soccer players. Biology of Sport, 40 (2), 521-529. https://doi.org/10.5114/biolsport.2023.118022.

Peng, H. T., Kernozek, T. W., & Song, C. Y. (2011). Quadricep and hamstring activation during drop jumps with changes in drop height. Physical Therapy in Sport, 12(3), 127-132. https://doi.org/10.1016/j.ptsp.2010.10.001

Raya-González, J., Prat-Luri, A., López-Valenciano, A., Sabido, R., & Hernández-Davó, J. L. (2021). Effects of Flywheel Resistance Training on Sport Actions. A Systematic Review and Meta-Analysis. Journal of Human Kinetics, 77(1), 191–204. https://doi.org/10.2478/hukin-2021-0020

Sabido, R., Hernández-Davó, J. L., & Pereyra-Gerber, G. T. (2018). Influence of different inertial loads on basic training variables during the flywheel squat exercise. International Journal of Sports Physiology and Performance, 13(4), 482–489. https://doi.org/10.1123/ijspp.2017-0282

Sagelv, E. H., Pedersen, S., Nilsen, L. P. R., Casolo, A., Welde, B., Randers, M. B., & Pettersen, S. A. (2020). Flywheel squats versus free weight high load squats for improving high velocity movements in football. A randomized controlled trial. BMC Sports Science, Medicine and Rehabilitation, 12, 1-13. https://doi.org/10.1186/s13102-020-00210.

Samozino, P. (2018). A simple method for measuring force, velocity and power capabilities and mechanical effectiveness during sprint running. In Biomechanics of Training and Testing: Innovative Concepts and Simple Field Methods. https://doi.org/10.1007/978-3-319-05633-3_11

Samozino, P., Rejc, E., di Prampero, P. E., Belli, A., & Morin, J. B. (2012). Optimal force-velocity profile in ballistic movements-Altius: Citius or Fortius? Medicine and Science in Sports and Exercise, 44(2), 313–322. https://doi.org/10.1249/MSS.0b013e31822d757a

Sánchez-Sixto, A., McMahon, J. J., & Floría, P. (2021). Verbal instructions affect reactive strength index modified and time-series waveforms in basketball players. Sports Biomechanics. https://doi.org/10.1080/14763141.2020.1836252

Schoenfeld, B. J., Grgic, J., Every, D. W. van, & Plotkin, D. L. (2021). Loading Recommendations for Muscle Strength, Hypertrophy, and Local Endurance: A Re-Examination of the Repetition Continuum.

Tous-Fajardo, J., Maldonado, R. A., Quintana, J. M., Pozzo, M., & Tesch, P. A. (2006). The flywheel leg-curl machine: offering eccentric overload for hamstring development. International Journal of Sports Physiology and Performance, 1(3), 293–298. https://doi.org/10.1123/ijspp.1.3.293

van Hooren, B., & Zolotarjova, J. (2017). The Difference between Countermovement and Squat Jump Performances: A Review of Underlying Mechanisms with Practical Applications. In Journal of Strength and Conditioning Research (Bd. 31, Nummer 7, S. 2011–2020). https://doi.org/10.1519/JSC.0000000000001913

Wisløff, U., Castagna, C., Helgerud, J., Jones, R., & Hoff, J. (2004). Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. British Journal of Sports Medicine, 38(3), 285–288. https://doi.org/10.1136/bjsm.2002.002071

Downloads

Publicado

2025-01-01

Como Citar

Muñoz-López, A., Marmol, D., Sanchez-Sixto, A., Pozzo, M., & Floría, P. (2025). A carga máxima no volante para avaliar o desempenho: validação e reprodutibilidade na sentadilla. Retos, 62, 910–917. https://doi.org/10.47197/retos.v62.106921

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.

Artigos mais lidos do(s) mesmo(s) autor(es)