Concordância entre os parâmetros bioelétricos medidos com dois dispositivos de bioimpedância diferentes numa população adulta espanhola saudável, de raça branca e de uma ampla faixa etária

Autores

DOI:

https://doi.org/10.47197/retos.v63.110170

Palavras-chave:

ângulo de fase, bioimpedância, composição corporal, reatância, resistência

Resumo

Introdução e objetivos: a análise de bioimpedância (BIA) é um método não invasivo para a determinação da composição corporal. As equações que calculam os componentes do corpo apresentam erros, pelo que os parâmetros bioelétricos obtidos com o BIA, resistência, reatância e ângulo de fase, são cada vez mais frequentemente utilizados como preditores de estados de saúde ou de desempenho. Os objetivos do presente estudo foram: 1) Comparar os valores bioelétricos obtidos por dois dispositivos BIA, um mão-pé (BIA-101) e outro mão-mão (BIA-TELELAB), numa população adulta espanhola saudável. ampla faixa etária; 2) Fornecer valores de referência destes parâmetros para ambos os dispositivos, que poderão ser utilizados para estudos futuros em populações brancas com patologias.
Metodologia: Participaram nesta investigação 206 sujeitos entre os 20 e os 70 anos. As medições foram realizadas com uma corrente de 250 µA e uma frequência de 50 kHz.
Resultados: os resultados obtidos para os três parâmetros bioelétricos são diferentes entre os dois dispositivos devido, entre outras coisas, ao diferente caminho percorrido pela corrente. No entanto, existe uma correlação significativa forte ou muito forte entre os valores obtidos, o que indica que é possível desenvolver equações diferentes, mas válidas, com os mesmos para obter a composição corporal.
Conclusões: os valores bioelétricos obtidos por ambos os dispositivos de BIA para uma população adulta saudável, de raça branca e de ampla faixa etária, com um número relativamente grande de sujeitos em cada faixa etária, podem servir de referência para estudos futuros.

Biografia Autor

Francisco José Berral de la Rosa, Universidad Pablo de Olavide de Sevilla

Catedratico de Universidad

Doctor en Medicina y Cirugía

Referências

Berral-Aguilar, A. J., Schröder-Vilar, S., Rojano-Ortega, D., & Berral-de la Rosa, F. J. (2022). Body Compo-sition, Somatotype and Raw Bioelectrical Impedance Parameters of Adolescent Elite Tennis Players: Age and Sex Differences. International Journal of Environmental Research and Public Health, 19(24), 17045. https://doi.org/10.3390/ijerph192417045

Booth, A., Magnuson, A., & Foster, M. (2014). Detrimental and protective fat: body fat distribution and its relation to metabolic disease. Hormone Molecular Biology and Clinical Investigation, 17(1), 13–27. https://doi.org/10.1515/hmbci-2014-0009

Bosy-Westphal, A., Danielzik, S., Dörhöfer, R. P., Later, W., Wiese, S., &Müller, M. J. (2006). Phase angle from bioelectrical impedance analysis: Population reference values by age, sex, and body mass index. Journal of Parenteral and Enteral Nutrition, 30(4), 309–316. https://doi.org/10.1177/0148607106030004309

Buffa, R., Floris, G., & Marini, E. (2002). Bioelectrical impedance vector in pre- and postmenarcheal fe-males. Nutrition, 18(6), 474‒478. https//doi.org/10.1016/s0899-9007(02)00755-4

Campa, F., Gobbo, L. A., Stagi, S., Cyrino, L. T., Toselli, S., Marini, E., & Coratella, G. (2022). Bioelectrical impedance analysis versus reference methods in the assessment of body composition in ath-letes. European Journal of Applied Physiology, 122(3), 561–589. https://doi.org/10.1007/s00421-021-04879-y

Campa, F., Toselli, S., Mazzilli, M., Gobbo. L, A., & Coratella, G. (2021) Assessment of body composition in athletes: a narrative review of available methods with special reference to quantitative and qualitative bioimpedance analysis. Nutrients 13(5), 1620. https://doi.org/10.3390/nu13051620

Castillo, W. N., Soriano, S. F., & Rodriguez, I. E. (2023). Composición corporal y aptitud física en las divi-siones menores de un equipo de fútbol profesional colombiano. Retos, 48, 271‒276. https://doi.org/10.47197/retos.v48.94838

De Palo, T., Messina, G., Edefonti, A., Perfumo, F., Pisanello, L., Peruzzi, L., Di Iorio, B., Mignozzi, M., Vienna, A., Conti, G., Penza, R., & Piccoli, A. (2000). Normal Values of the Bioelectrical Imped-ance Vector in Childhood and Puberty. Nutrition, 16(6), 417‒424. https://doi.org/10.1016/s0899-9007(00)00269-0

Dellinger, J. R., Johnson, B. A., Benavides, M. L., Moore, M. L., Stratton, M. T., Harty, P. S., Siedler, M. R., & Tinsley, G. M. (2021). Agreement of bioelectrical resistance, reactance, and phase angle values from supine and standing bioimpedance analyzers. Physiolical Measurement, 42(3). https://doi.org/10.1088/1361-6579/abe6fa.

Dhana, K., Kavousi, M., Ikram, M. A., Tiemeier, H. W., Hofman, A., & Franco O. H. (2015). Body shape index in comparison with other anthropometric measures in prediction of total and cause-specific mortality. Journal of Epidemiology and Community Health, 70(1), 90–96. https://doi.org/10.1136/jech-2014-205257

Earthman, C. P. (2015). Body composition tools for asses¬sment of adult malnutrition at the bedside: a tutorial on research considerations and clinical applications. Journal of Parentereral and Enter-al Nutrition, 39(7), 787–822. https://doi.org/10.1177/0148607115595227

Enriquez-Del Castillo, L. A., Cervantes, N., Candia, R., Flores, L. A. (2021). Capacidades físicas y su rela-ción con la actividad física y composición corporal en adultos. Retos, 41, 674‒683. https://doi.org/10.47197/retos.v41i0.83067

Francisco, R., Matias, C. N., Santos, D. A., Campa, F., Minderico, C. S., Rocha, R., Heymsfield, S. B., Lukaski, H., Sardinha, L. B., & Silva, A. M. (2020). The Predictive Role of Raw Bioelectrical Impedance Pa-rameters in Water Compartments and Fluid Distribution Assessed by Dilution Techniques in Athletes. Interantional Journal of Environmental Research and Public Health, 17(3), 759. https://doi.org/10.3390/ijerph17030759

Genton, L., Mareschal, J., Karsegard, V. L., Achamrah, N., Delsoglio, M., Pichard, C., Graf, C., & Herrmann, F. R. (2019). An Increase in Fat Mass Index Predicts a Deterioration of Running Speed. Nutrients, 11(3), 701. https://doi.org/10.3390/nu11030701

Genton, L., Mareschal, J., Norman, K., Karsegard, V. L., Delsoglio, M., Pichard, C., Graf, C., & Herrmann, F. R. (2020). Association of phase angle and running performance. Clinical. Nutrition ESPEN, 37, 65‒68. https://doi.org/10.1016/j.clnesp.2020.03.020

Giorgi, A., Vicini, M., Pollastri, L., Lombardi, E., Magni, E., Andreazzoli, A., Orsini, M., Bonifazi, M., Lukaski, H., & Gatterer, H. (2018). Bioimpedance patterns and bioelectrical impedance vector analysis (BIVA) of road cyclists. Journal of Sports Science, 36(22), 2608e13. https://doi.org/10.1080/02640414.2018.1470597

Gonzalez, M. C., Barbosa-Silva, T. G., Bielemann, R. M., Galla¬gher, D., & Heymsfield, S. B. (2016). Phase angle and its deter¬minants in healthy subjects: influence of body composition. American Jour-nal of Clinical Nutrition, 103(3), 712‒716. https://doi.org/10.3945/ajcn.115.116772.

Gonzalez-Macias, M., Flores, F., Keys, K., & Arrayales, E. (2024). Efectos del sobrepeso y la obesidad so-bre los parámetros biomecánicos de la marcha en niños de Mexicali, B.C. Retos, 56, 24‒30. https://doi.org/10.47197/retos.v56.102440

Guedes, F. F. O., De Sousa, I. M., De Medeiros, G. O. C., Gonzalez, M. C., & Fayh A. P. T. (2023). Is there a difference in the parameters of the bioelectrical impedance obtained from devices from differ-ent manufacturers? A cross-sectional study in hospitalized cancer patients. Clinical Nutrition ESPEN, 56, 120‒126. doi: https://doi.org/10.1016/j.clnesp.2023.05.010.

Hamilton-James, K., Collet, T., Pichard, C., Genton, L., & Dupertuis, Y. M. (2021). Precision and accuracy of bioelectrical impedance analysis devices in supine versus standing position with or without retractable handle in Caucasian subjects. Clinical Nutrition ESPEN, 45, 267–274. https://doi.org/10.1016/j.clnesp.2021.08.010

Hernández-Jaña, S., Abarca-Moya, D., Cid-Pizarro, Í., Gallardo-Strelow, J., González-Pino, Y., Zavala-Crichton, J., Olivares-Arancibia, J., Mahecha-Matsudo, S., & Yáñez-Sepúlveda, R. (2021). Effects of a Concurrent Training Protocol on Body Composition and Phase Angle in Physically Inactive Young Women: A Quasi-Experimental Intervention Study. International Journal of Morphology, 39(6), 1600‒1608. https://doi.org/10.4067/S0717-95022021000601600

Heymsfield, S., Lohman, T., Wang, Z., & Going, S. B. (2005). Human Body Composition (2nd ed). Human Kinetics.

Hopkins,W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise, 41(1), 3‒13. https://doi.org/10.1249/MSS.0b013e31818cb278

Judge, L. W., Bellar, D. M., Popp, J. K., Craig, B. W., Schoeff, M. A., Hoover, D. L., Fox, B., Kistler, B. M., & Al-Nawaiseh, A. M. (2021). Hydration to Maximize Performance and Recovery: Knowledge, Atti-tudes, and Behaviors Among Collegiate Track and Field Throwers. Journal of Human Kinetics, 79, 111‒122. https://doi.org/10.2478/hukin-2021-0065

Kasper, A. M., Langan-Evans, C., Hudson, J. F., Brownlee, T. E., Harper, L. D., Naughton, R. J., Morton, J. P., & Close, G. L. (2021). Come Back Skinfolds, All Is Forgiven: A Narrative Review of the Efficacy of Common Body Composition Methods in Applied Sports Practice. Nutrients, 13(4), 1075. https://doi.org/10.3390/nu13041075

Koury, J. C., Trugo, N. M. F., & Torres, A. G. (2014). Phase angle and bioelectrical impedance vectors in adolescent and adult male athletes. International Journal of Sports Physiology and Perfor-mance, 9(5), 798‒804. https://doi.org/10.1123/ijspp.2013-0397.

Kyle, U. G., Bosaeus, I., De Lorenzo, A. D., Deurenberg, P., Elia, M., Gómez, J. M., Heitmann, B. L., Kent-Smith, L., Melchior, J. C., Pirlich, M., Scharfetter, H., Schols, A. M., & Pichard, C. (2004). Bioelectri-cal impedance analysis—part I: review of principles and methods. Clinical Nutrition, 23(5), 1226‒1243. https://doi.org/10.1016/j.clnu.2004.06.004

Lang, T., Streeper, T., Cawthon, P., Baldwin, K., Taaffe, D. R., & Harris, T. B. (2010). Sarcopenia: etiology, clinical consequences, intervention, and assessment. Osteoporosis International, 21(4), 543–559. https://doi.org/10.1007/s00198-009-1059-y

Malecka-Massalska, T., Smolen, A., Madro, E., & Surtel, W. (2012). Bioimpedance vector pattern in Tai-wanese and Polish college students detected by bioelectric impedance vector analysis: prelimi-nary observations. Scientific World Journal, 2012, 684865. https://doi.org/10.1100/2012/684865

Melo, M., de Lima, L., de Barros, M. A., Borba, E., Fernandez, P., Keese, F., Moreira, R. A., & de Sá Rego, M. (2022). Correlation between anthropometric parameters and cardiometabolic risk in military. Retos, 44, 1099-1113. https://doi.org/10.47197/retos.v44i0.91559

Micheli, M. L., Pagani, L., Marella, M., Gulisano, M., Piccoli, A., Angelini, F., Burtscher, M., & Gatterer, H. (2014). Bioimpedance and impedance vector patterns as predictors of league level in male soc-cer players. International Journal of Sports Physiology and Performance, 9(3), 532‒539. https://doi.org/10.1123/ijspp.2013-0119

Morbeck, M., da Silva, E., Rodrigues, F., Campos, T., Rodrigues, B. K., de Alcantara, L. V., Pontes-Silva, S., & Adami, F. (2023). Physical activity and body composition in a Quilombola community in the Tocantins state (Brazil). Retos, 49, 394-400. https://doi.org/10.47197/retos.v49.95812

Moya-Amaya, H., Molina-López, A., Berral-Aguilar, A. J., Rojano-Ortega, D., Berral-De La Rosa, C. J., & Berral-De La Rosa, F. J. (2021). Bioelectrical phase angle, muscle damage markers and inflam-matory response after a competitive match in professional soccer players. Polish Journal of Sport and Tourism, 28(2), 8‒13. https://doi.org/10.2478/pjst-2021-0014

Norgan, N. G. (2005). Laboratory and field measurements of body composition. Public Health Nutri-tion, 8(7A), 1108–1122. https://doi.org/10.1079/phn2005799

Rassel, C. R., Bewski, N. A., O’Loughlin, E. K., Wright, A., Scheel, D. P., Puig, L., & Kakinami, L. (2019). Va-lidity of electrical impedance myography to estimate percent body fat: Comparison to bio-electrical impedance and dual-energy X-ray absorptiometry. Journal of Sports Medicine and Physical Fitness, 59(4), 632–639. https://doi.org/10.23736/S0022-4707.18.08505-5.

Rojano-Ortega, D., Moya-Amaya, H., Berral-Aguilar, A. J., Baratto, P., Molina-López, A., & Berral-de la Rosa, F. J. (2024). Development and validation of new bioelectrical impedance equations to ac-curately estimate fat mass percentage in a heterogeneous Caucasian population. Nutrition Re-search, 123, 80‒87. https://doi.org/10.1016/j.nutres.2024.01.002

Rojano-Ortega, D., Moya-Amaya, H., Molina-López, A., Berral-Aguilar, A. J., Berral-de la Rosa, F. J. (2024). Correlación del Ángulo de Fase con las Masas Muscular y Grasa en una Población Caucásica Sana de Amplio Rango de Edad. International Journal of Morphology, 42(4), 918‒922. https://doi.org/10.4067/S0717-95022024000400918

Saltzman, E., & Mogensen, K. M. (2013). Physical and Clinical Assessment of Nutrition Status. In: Nutri-tion in the Prevention and Treatment of Disease. Academic Press.

Sardinha, L. B., Correia, I. R., Magalhães, J. P., Júdice, P. B., & Silva, A. M. (2020). Hetherington-Rauth M. Development and validation of BIA prediction equations of upper and lower limb lean soft tis-sue in athletes. European Journal of Clinical Nutrition, 74(12), 1646–1652. https://doi.org/10.1038/s41430-020-0666-8.

Silva, T. R., Nunes, C. L., Jesus, F., Francisco, R., Teixeira, V. H., Sardinha, L. B., Martins, P., Minderico, C., & Silva, A. M. (2022). Between-devices agreement in obtaining raw bioelectrical parameters after a lifestyle intervention targeting weight loss in former athletes. Journal of Sports Science, 40(16), 1857‒1864. https://doi.org/10.1080/02640414.2022.2115755.

Tinsley, G. M., Moore, M. L., Silva, A. M., & Sardinha, L. B. (2020). Cross-sectional and longitudinal agreement between two multifrequency bioimpedance devices for resistance, reactance, and phase angle values. European Journal of Clinical Nutrition, 74(6), 900‒911. https://doi.org/10.1038/s41430-019-0496-8.

Vaquero-Cristóbal, R., Albaladejo-Saura, M., Luna-Badachi, A. E., & Esparza-Ros, F. (2020). Differences in Fat Mass Estimation Formulas in Physically Active Adult Population and Relationship with Sums of Skinfolds. International Journal of Environmental Research and Public Health 17(21), 7777. https://doi.org/10.3390/ijerph17217777

Volpe, S. L., Poule, K. A., & Bland, E. G. (2009). Estimation of prepractice hydration status of National Collegiate Athletic Association Division I athletes. Journal of Athletic Training, 44(6), 624–629. https://doi.org/10.4085/1062-6050-44.6.624

Zamboni, M., Mazzali, G., Fantin, F., Rossi, A., & Di Francesco, V. (2008). Sarcopenic obesity: a new cate-gory of obesity in the elderly. Nutrition, Metabolism, and Cardiovascular Diseases, 18(5), 388–395. https://doi.org/10.1016/j.numecd.2007.10.002

Publicado

2025-02-01

Como Citar

Rojano Ortega, D., Moya Amaya, H. ., Molina López, A., Berral Aguilar, A. J., & Berral de la Rosa, F. J. (2025). Concordância entre os parâmetros bioelétricos medidos com dois dispositivos de bioimpedância diferentes numa população adulta espanhola saudável, de raça branca e de uma ampla faixa etária. Retos, 63, 1011–1020. https://doi.org/10.47197/retos.v63.110170

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.

Artigos mais lidos do(s) mesmo(s) autor(es)